给非电化学专家的教程——电池研究中的电化学技术

图片
研究背景

随着电动汽车和电子产品的普及,电池产品得到快速发展。巨大的市场潜力和尚存的发展局限激发研究人员对电池的热情,然而目前研究电池的科研人员大部分都并不是电化学科班出身,而是来自材料和物理化学等领域,因此不一定具备系统的电化学知识。对于电池研究而言,理解电化学数据、标准电化学测试和专业电化学分析都是必备的电化学知识技能,为此有必要对电化学测试和电化学分析知识加以概括,为广大电池研究人员提供理论支持。

图片
成果简介

近日,香港城市大学Xuming Yang博士研究生Andrey L. Rogach教授(共同通讯)Adv. Energy Mater.上发表了Electrochemical Techniques in Battery Research: A Tutorial for Nonelectrochemists的最新研究工作。该工作介绍了基本的电化学概念,针对电压、电流和阻抗等测试技术进行了详细的讨论分析,为电池研究工作者提供学习大纲和指导教程。 

图片
研究亮点

(1)介绍了基本的电化学概念:电压、电流、容量和测试时间;

(2)介绍了常见的电极材料评判指标:能量/功率密度、库伦效率和循环寿命;

(3)针对上述概念和指标,介绍了常见的电化学测试手段:循环伏安测试、恒电流充放电测试、交流阻抗测试、恒电压间歇滴定法和恒电流间歇滴定法,将上述方法归类为电位技术、电流技术和阻抗技术,并针对目前研究工作和文献报道中存在的不妥对其进行讨论。

图片
图文导读

1. 基本电化学概念介绍

电压拉第容量是电极材料的本质属性,电压由反应物和生成物之间的吉布斯自由能变决定,而法拉第容量由可转移电子数决定,具体数值可由方程(1)和(2)得出,其中E是电压,ΔrG是反应的吉布斯自由能变,QF是法拉第容量,M是电极的相对分子质量,F是法拉第常数。能量容量(QE)则是电压和法拉第容量的结果,可由方程(3)得出。然而,上述三个方程只是指出理论参数的计算方法,实际实验结果通常偏离理论计算结果,因为实际情况通常受极化、副反应和不完全的反应等影响,副反应会消耗部分电荷,而电阻会导致能量以热量形式发生损耗。除此以外,库伦效率能量效率也是电池研究中的重要概念。

图片 

2. 电位技术

循环伏安测试(CV)是电化学测试中最重要的电位技术,在电池研究中使用循环伏安测试通常会涉及固液界面、离子扩散和多重反应等等。循环伏安测试所得到的典型曲线如图1(b)所示,一对高斯峰对应一个电极反应,峰电流(ip)之比及其对应的电压差(ΔEp)可用于判断电化学反应的可逆性。当CV曲线转换成电压vs 容量曲线(如图1 c),充放电平台对应于CV曲线中峰电流对应的电压。当电流采用电流密度(A g-1)而不是电流(A)作度量时,所得到的绝对值就是比容量(mAh g-1)。特别需要注意的是,只有当电池性能与活性物质负载量无关时才能采用比容量作度量。另外,循环伏安测试需要指定合适的电压窗口和扫描速率,为此有两个判断标准用于指定电压窗口和扫描速率:(1)在指定的电压窗口范围内,应该出现电极反应,并且在结束时电流应该降为零;(2)在指定扫速下,积分容量应该接近于电极材料的理论容量(基于这一点,电池扫描速率一般在0.1-10 mV s-1范围之内)。

图片

1(a)循环伏安测试的电压曲线(b)电流响应与电压曲线(c)电压与积分电流曲线

电流响应一共有双电层响应(idl)、表面响应(is)和体积响应(iB三种(如图2)。双电层响应类似于物理电容器,大小只取决于容量和扫速,由于不存在化学反应,因而不属于法拉第过程。在电池体系中,双电层电流通常很小,而表面响应(is)和体积响应(iB)共同组成法拉第电流,它们对扫速具有不同的响应,具体可参考以下公式:

图片

表面响应和体积响应的区别在于固体电极体相中的电荷传输远远慢于液体电解液中的传输表面的法拉第过程带有电容属性,通常被称为赝电容或电化学电容电化学电容与物理电容最大的区别就是:(1)赝电容电流响应与电压有关,该电压由表面氧化还原反应的吉布斯自由能变决定;(2)化学反应过程并不是瞬间完成的,也就是说赝电容电流响应并不是完美地与扫速成比例活性物质体相中氧化还原过程贡献的电流由电荷传输产生,并近似地与扫速的平方根成比例。对于完全是扩散控制的电极反应,峰电流和扫速平方根的线性关系通常被用于计算扩散系数。

反应动力学是电极材料的重要特征,为此大部分的电池都被设计为赝电容特性,并且依然能够保持大容量特性。在这种理念下,纳米材料通常被用作电极材料以提高倍率性能,原因在于纳米材料本身就具有大比表面积的特点,导致很高的赝电容贡献和快速扩散控制电流响应。对于单纯的扩散控制电化学体系(主要是正极材料),不同扫速下的CV测试通常能够得到扩散系数。然而,当赝电容贡献不能被忽略的时候,其贡献值就可以通过以下方程得出:

图片

在上述方程中,a和b不是常数,而是可以根据扫速变化的参数。在细小的扫速变化下,a和b可以被视为常数,b值可以从ip vs v1/2的曲线得出,b值得范围在0.5-1之间,分别对应于扩散控制和赝电容反应。因此,不难理解,b值可以反映电池体系是赝电容反应占主导还是扩散控制占主导,但是当b值位于中间值时(如b=0.8),则不能明确判断赝电容和扩展控制的占比。为此可以通过以下方程定量计算赝电容贡献和扩散控制的具体占比:

图片

然而这种方法的缺点就是需要进行繁琐复杂的运算,但是可以通过矩阵运算进行简化,如利用MATLAB或者其他计算程序自动运行。该方法另一个致命缺陷就是,该方程只有在增加的扫速导致极化,从而引起的峰偏移可以忽略不记的情况下使用。为此提出了以下方程用于定量区分两部分容量贡献,该方程即使在极化不能忽略的情况下依然可以工作。

图片

如图2f,可以拟合扫速的平方根的倒数(v-1/2)与积分容量之间的线性曲线,得出的截距图片代表赝电容贡献容量,该部分与扫速无关;斜率图片代表扩散控制贡献的容量,与扫速的平方根成比例。

图片

2(a)三种电流响应模式 (b)、(c)不同扫速下的循环伏安测试曲线 (dlog2(ipvs log2(v)曲线(e)赝电容贡献(f)积分容量的线性拟合 vs 扫速的平方根的倒数

3电流技术

恒流充放电测试是常用于评价电池容量、可逆性、循环性能和倍率性能的测试方法,其在恒定电流下测试(图3a),并且需要指定一个与CV测试一样的电化学窗口,最终得到有明显平台的倾斜曲线(图3b)。为了更方便地看出电位平台,可以做出积分容量曲线(dQ/dV  vs V),其产生的峰对应GCD曲线的平台,并且与CV曲线的峰一致。值得一提的是,dQ/dV曲线在积分过程中难免产生很多毛刺,为了避免这一问题,可以提前圆滑GCD曲线(去除白噪声),并增加取值点的间隔(通过得到k>1的(Qn+k-Qn)/ (Vn+-Vn)降低误差)

恒流充放电通常需要对活性物质质量或电极面积进行归一化,以得到重量比容量或面积比容量。在电池测试中,常见的容量度量单位是重量比容量(mAh g-1),并且通常采用重量比电流密度(A/g)或C(1 C指的是1小时内使电池充满电的电流值)做电流度量。需要指出的是,制作全电池匹配正负极容量时,出于电荷守恒,应该匹配面积比容量(mAh cm-2)而不是重量比容量(mAh g-1)。同样的,在进行对比实验时,应该控制的是面积比容量(mAh cm-2)而不是负载量(mg cm-2),也就是C作为电流度量更合适,重量比电流密度只有在质量对容量影响可以忽略不计的情况下才使用。然而在目前大量的研究工作中,为了方便通常采用重量比容量,这就意味着目前大量的优秀研究结果只有在负载量极少的情况下才能得出。

图片

3(a)实际测试的电流曲线 (b)实际记录的电压响应与容量的关系曲线(c)恒流充放电测试充放电过程中的容量电压积分曲线 (d)循环性能(e)倍率性能(f)功率密度与对应能量密度的关系图

恒电流间歇滴定法(GITT)可以测量充放电过程中各个平衡状态下的扩散系数,需要特别说明的是:放电时间应该足够短,以至于E ττ 1/2之间可以建立线性关系(图4c),只有这样放电过程的扩散系数才可以通过以下方程计算:

图片

而充电过程的扩散系数也可以通过下列方程计算:

图片

但是Vm指的是中间产物的摩尔体积,其随着离子嵌入电极材料的浓度而变化;A是电化学面积,而不是极片的几何面积,也不是活性物质的表面积,因为上述两种面积均与粘结剂和导电添加剂相连,而电极材料中电荷的摄取通常具有各向异性,也就是并不是所有的面积均对电荷具有电化学活性。

图片

(a)恒电流间歇滴定曲线 (b)在特定静止-放电-静止阶段的电压 vs 时间关系图(c)电压 vs τ1/2关系图,τ为放电时间(d)在特定静止-充电-静止阶段的电压 vs 时间关系图

4阻抗技术

如图5a给出Nyquist图和对应的等价电路(Randles电路),其中Rint是电池体系固有电阻,Cdl是双电层电容,Rct是电荷传输电阻,ZW是韦伯阻抗,它与半无限的线性扩散有关,并与频率的平方根成反比。图5 a中高频区的半圆部分从Rint开始,其半径即为Rct的一半,当多一个半圆出现时,就应该考虑到在等效电路中多一个电容器存在。当频率足够低时,双电层电容可以视为处于关闭状态,并可以将它移出等效电路,此时的阻抗方程可以简化为:

图片

这就是为什么理想的Nyquist图中低频部分会出现45°的曲线。通过拟合Zre(实部)或Zim(虚部)与ω-1/2(ω为角频率)之间的线性关系,可以得到σ并根据以下方程计算出扩散系数。

图片

可以通过在不同浓度(x下的Li+/Na+对开路电压求积分得到,而此处的A同样为电化学面积,而不是电极材料的几何面积或活性物质的比表面积

实际的电池体系中,电极表面粗糙,赝电容存在,离子的实际扩散并不能以一维形式线性扩散,使得高频区出现圆弧而不是半圆,低频区的直线并不是4(图5c)。在这种情况下,双电层电容用恒相位元件替代。

图片

(a)Randles电路模型(蓝色)及其对应的电化学阻抗图谱(红色)(b)Zre(实部)或Zim(虚部)与ω-1/2(ω为角频率)之间的线性关系 (c)偏离的Randles电路模型(蓝色)及其对应的电化学阻抗图谱(红色)

图片
小  结

本工作介绍了与电池研究有关的基础电化学概念,包括电位、电流和阻抗的测试技术。出于实用性的考虑,文章中引用了大量电化学方程,这些方程对于理解数据、分析数据十分有意义。更重要的是,作者针对电池研究中常见的测试技术和分析方法展开讨论,强调对应电化学方程的使用条件,并指出了目前电池研究中电化学分析存在的不妥之处。这一研究成果不仅为非电化学背景的研究工作者提供了系统掌握电化学理论的入门学习机会,更加为已经拥有电化学背景知识的研究工作者指明目前潜在的错误,提高大家对电化学知识的理解和认识,为电池的设计、研究和优化提供理论指导。

图片
文献链接

Electrochemical Techniques in Battery Research: A Tutorial for Nonelectrochemists  (Adv. Energy Mater.2019, DOI: 10.1002/aenm.201900747)

原文链接

https://onlinelibrary.wiley.com/doi/10.1002/aenm.201900747

科研聚焦
猜你喜欢
热门推荐
  • 中国人造石墨行业发展现状简析

    中国人造石墨行业发展现状简析

    人造石墨广义上指一切通过有机碳化再经过石墨化高温处理得到的石墨材料;狭义上指以杂志含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭...

    2023-12-22 来源:未知 浏览:61 次

    分享
  • 论文通过率飞涨!12款论文润色神器太

    论文通过率飞涨!12款论文润色神器太

    SCI、EI等期刊、会议论文现在大都需要英文写作,而非英语母语作者在写作上往往出现词不达意、描述模糊、句式混乱、累赘拖沓等现象,但是,期刊并不会因为作者母语...

    2023-12-21 来源:未知 浏览:80 次

    分享
  • 如何使用ChatGPT+DeepL润色论文?

    如何使用ChatGPT+DeepL润色论文?

    如何使用ChatGPT+DeepL两大神器来润色自己的论文! 一、拥有一个ChatGPT账号! 这一步道道就不展开讲了,相信很多同学现在手里已经有账号了! 二、安装插件 拥有已注册好...

    2023-12-21 来源:未知 浏览:116 次

    分享
  • 锂电池中Li+扩散系数的测定方法

    锂电池中Li+扩散系数的测定方法

    锂电池中Li+扩散系数的测定:恒电位间歇滴定法(PITT) 锂离子电池在进行充电时,正极会有 Li + 产生, Li + 从正极脱出,经电解质迁移到负极嵌入,正负极分别处于贫锂态...

    2023-12-19 来源:未知 浏览:79 次

    分享
  • 给非电化学专家的教程——电池研究

    给非电化学专家的教程——电池研究

    研究背景 随着电动汽车和电子产品的普及,电池产品得到快速发展。巨大的市场潜力和尚存的发展局限激发研究人员对电池的热情,然而目前研究电池的科研人员大部分...

    2023-12-17 来源:未知 浏览:179 次

    分享
  • 1GWH电池材料用量测算

    1GWH电池材料用量测算

    正极材料: 磷酸铁锂材料: 1GWh磷酸铁锂电池所需正极材料在2200吨至2500吨之间 , 在这里我们取中间值2350吨 ; 而根据相对分子质量之比我们可以得出 , 生产一吨磷酸铁...

    2023-12-10 来源:未知 浏览:83 次

    分享
  • 电解液添加量是个难题,终于有人讲

    电解液添加量是个难题,终于有人讲

    慕尼黑工业大学Florian J. Gnter等人 根据电化学阻抗谱、注液、老化和寿命试验等实验数据,给出了软包电池的电解液用量、润湿速率、容量、能量密度和寿命之间的相互关...

    2023-12-08 来源:未知 浏览:65 次

    分享
  • 干货!建议收藏!锂离子电池生产过

    干货!建议收藏!锂离子电池生产过

    锂离子电池生产过程中遇到的各种问题实例 电池中的对立面 低容的思路分析 浅谈六西格玛设计 影响锂离子电池循环性能的几个因素 设计中制定公差的注意事项 低容的制...

    2023-12-08 来源:物流文视界 浏览:154 次

    分享
  • “白色黄金”锂的绿色化难题

    “白色黄金”锂的绿色化难题

    如果仅增加锂产量,不解决其开发加工中的资源、生态、环境和社会问题,或将抵消它为能源转型带来的好处。 ▲ 玻利维亚的乌尤尼盐滩,从盐壳下的盐水池中可以收集...

    2023-11-30 来源:未知 浏览:63 次

    分享
  • 【BET表征干货】深入学习多孔材料比

    【BET表征干货】深入学习多孔材料比

    ...

    2023-11-13 来源:未知 浏览:181 次

    分享
  • 跟着顶刊学配色-第十二季

    跟着顶刊学配色-第十二季

    ...

    2023-11-13 来源:未知 浏览:121 次

    分享
  • 跟着顶刊学配色-第十一季

    跟着顶刊学配色-第十一季

    ...

    2023-11-13 来源:未知 浏览:113 次

    分享
  • 跟着顶刊学配色-第十季

    跟着顶刊学配色-第十季

    ...

    2023-11-13 来源:未知 浏览:85 次

    分享
  • 跟着顶刊学配色-第九季

    跟着顶刊学配色-第九季

    ...

    2023-11-13 来源:未知 浏览:190 次

    分享
  • 跟着顶刊学配色-第八季

    跟着顶刊学配色-第八季

    ...

    2023-11-13 来源:未知 浏览:88 次

    分享
  • 跟着顶刊学配色-第七季

    跟着顶刊学配色-第七季

    ...

    2023-11-13 来源:未知 浏览:193 次

    分享
  • 跟着顶刊学配色-第六季

    跟着顶刊学配色-第六季

    ...

    2023-11-13 来源:未知 浏览:142 次

    分享
  • 跟着顶刊学配色-第五季

    跟着顶刊学配色-第五季

    ...

    2023-11-13 来源:未知 浏览:196 次

    分享
  • 跟着顶刊学配色-第四季

    跟着顶刊学配色-第四季

    ...

    2023-11-13 来源:未知 浏览:147 次

    分享
  • 跟着顶刊学配色-第三季

    跟着顶刊学配色-第三季

    ...

    2023-11-13 来源:未知 浏览:65 次

    分享
  • 跟着顶刊学配色-第二季

    跟着顶刊学配色-第二季

    ...

    2023-11-13 来源:未知 浏览:51 次

    分享
  • 跟着顶刊学配色-第一季

    跟着顶刊学配色-第一季

    话不多说,上图:...

    2023-11-13 来源:未知 浏览:61 次

    分享
  • 干货|图解综述锂离子电池负极材料

    干货|图解综述锂离子电池负极材料

    锂离子电池至今已有30年的历程,本文将重点讲述期间锂离子电池负极材料的发展变化,供大家学习参考 参考文献: 1. Li M, Lu J, Chen Z, et al. 30 Years of Lithium‐Ion Batteries. ...

    2023-11-10 来源:未知 浏览:143 次

    分享
  • 图文详解Gitee的使用操作

    图文详解Gitee的使用操作

    Git 简介 Git(读音为/gɪt/)是一个开源的分布式版本控制系统,可以有效、高速地处理从很小到非常大的项目版本管理。也是Linus Torvalds为了帮助管理Linux内核开发而开发的...

    2023-11-10 来源:未知 浏览:70 次

    分享
  • “钠电池成本便宜30%”引争议,产业

    “钠电池成本便宜30%”引争议,产业

    《科创板日报》11月24日讯(记者 曾乐、编辑 郑远方) 今日(11月24日),一条关于钠离子电池的争论引发朋友圈热议。 具体来看,吉林大学青岛汽车研究院副院长顾国洪...

    2023-11-08 来源:财联社 浏览:146 次

    分享
  • 钠离子电池的经济性拆解:低成本依

    钠离子电池的经济性拆解:低成本依

    未来随着碳酸锂价格回落,钠离子电池产业链成熟,磷酸铁锂电芯的成本约 0.54 元/Wh,钠离子电芯的成本约 0.33 元/Wh,钠离子电芯成本明显低于磷酸铁锂电芯 0.21 元/Wh。...

    2023-11-08 来源:未知 浏览:139 次

    分享
  • 煤基炭材料产业链(部分持续更新)

    煤基炭材料产业链(部分持续更新)

    等静压前端工艺流程图 煤基吸附活性炭材料 煤-炭-硅材料产业链 石墨电极生产工艺流程图 预焙阳极生产工艺流程图...

    2023-11-06 来源:未知 浏览:161 次

    分享
  • 一文看懂针状焦行业发展趋势:未来

    一文看懂针状焦行业发展趋势:未来

    一、针状焦行业概况 1、与低硫焦性能差异 针状焦是由多环芳烃化合物脱除杂质和原生喹啉不溶物后经液相炭化制得。针状焦具有低热膨胀系数、低空隙度、低硫、低灰分...

    2023-11-06 来源:未知 浏览:119 次

    分享
  • 工程建设其他费用?它的组成有哪些

    工程建设其他费用?它的组成有哪些

    一、工程建设费用(造价) 1、建筑工程费 土建工程所花费的费用 (1)各类房屋建筑工程和列入房屋工程预算的供水、供暖、卫生、通风、煤气等设备费用及其装设、油...

    2023-10-29 来源:未知 浏览:102 次

    分享
  • 串接石墨化保温料筛分处理

    串接石墨化保温料筛分处理

    由于2015年以来炭素市场下滑已经深入到企来的方方面面,在行业行走多年的一些江湖大佬们对这点可以说已经认识得清清楚楚的了,如何来解此困境呢,我们的想法是,...

    2023-10-23 来源:未知 浏览:186 次

    分享
  • 石墨块生产中电阻料和保温料

    石墨块生产中电阻料和保温料

    石墨块石墨化炉的炉芯电阻,是由装入产品本身的电阻及电阻料的电阻这两部份组成。 电阻料一般都使用冶金焦粒(煅后石油焦),因为冶金焦粒虽然在石墨化过程中也在...

    2023-10-23 来源:未知 浏览:90 次

    分享
  • 大宗商品:一文了解石油焦产品、工

    大宗商品:一文了解石油焦产品、工

    0 1 石油焦简介 石油焦(Petroleumcoke)是原油经蒸馏将轻重质油分离后,重质油再经热裂的过程,转化而成的产品,从外观上看,焦炭为形状不规则,大小不一的黑色块状(...

    2023-10-23 来源:未知 浏览:150 次

    分享
  • 石油焦是什么?有什么分类?

    石油焦是什么?有什么分类?

    石油焦是一种黑色或深灰色硬固体石油产品,具有金属光泽和孔隙率。它是由粒状、柱状或针状石墨晶体组成的碳物质。石油焦由碳氢化合物组成,含有 90-97% 的碳、 1....

    2023-10-23 来源:未知 浏览:107 次

    分享
  • 中国现在,非常缺锂!|地球知识局

    中国现在,非常缺锂!|地球知识局

    最近,江西宜春地区私挖锂矿事件,已经引起了广泛的舆论关注。中央政府也派出了多批工作组前往宜春 整顿 。 江西是矿产大省,锂矿被私挖盗挖,直接原因是这种资源...

    2023-10-22 来源:未知 浏览:176 次

    分享
  • 锂资源行业市场及现状

    锂资源行业市场及现状

    据相关研究, 目前全球已探明锂储量折合碳酸锂当量(LCE)约8551万吨 , 以每辆电动汽车携带80千瓦时的锂电池组为基准计算,每辆汽车约消耗48公斤碳酸锂,全球现有可...

    2023-10-22 来源:未知 浏览:142 次

    分享
  • 新产品开发战略

    新产品开发战略

    大部分企业通过创新实现生存和增长。基于公司战略的创新战略为整个组织指引了创新方向,提供了创新架构。企业一般含有多个职能部门,每个职能部门需要制定自己的...

    2023-10-19 来源:未知 浏览:88 次

    分享
  • 企业产品战略规划手册

    企业产品战略规划手册

    本文节选自头条号 @管理实战智库 精选资料《企业产品战略规划手册》(产品组合、产品线和产品概念定义),全文共75页完整版,非常具有参考价值,值得收藏学习。...

    2023-10-19 来源:未知 浏览:100 次

    分享
  • 十步法进行产品战略规划

    十步法进行产品战略规划

    战略是做什么,战术是怎么做。 雷军曾说过,不要用战术上的勤奋掩饰战略上的懒惰。所以好的产品战略非常重要,今天我就借着《产品心经》这本书中提到的战略规划...

    2023-10-19 来源:未知 浏览:81 次

    分享
  • 氮气物理吸脱附表征数据分析你需要

    氮气物理吸脱附表征数据分析你需要

    所周知,氮气物理吸脱附表征是表征材料孔道结构的重要表征之一。本文内容对氮气物理吸脱附这一表征测试数据进行基础分析,主要测重于实际例子(以含介孔的分子筛...

    2023-10-19 来源:未知 浏览:95 次

    分享
  • 新能源汽车的电池普遍能用多久? 循

    新能源汽车的电池普遍能用多久? 循

    首先需要明确的是,对于新能源汽车动力电池的使用寿命,一般不是用时间来衡量,而是循环使用次数。既然是一个循环,肯定是有不同的起充点和终止充电时的电量点。...

    2023-10-10 来源:未知 浏览:153 次

    分享
  • 储能电池循环寿命≥5000次!工信部发

    储能电池循环寿命≥5000次!工信部发

    12月10日,工信部发布正式版《锂离子电池行业规范条件(2021年本)》和《锂离子电池行业规范公告管理办法(2021年本)》, 明确要求储能型电池能量密度145Wh/kg,电池组...

    2023-10-10 来源:未知 浏览:156 次

    分享
  • 电池储能次数要求

    电池储能次数要求

    储能电池: 储能电芯的循环次数需要根据用户的使用场景决定。大型储能系统电芯层级循环次数需不低于8000次,系统层级需不低于6000次。 户用储能循环次数只需要4000...

    2023-10-10 来源:未知 浏览:105 次

    分享
  • 硅基负极的行业痛点及相关解决方案

    硅基负极的行业痛点及相关解决方案

    随着新能源行业的蓬勃发展,锂离子电池逐步在往更高能量密度、更长循环寿命的方向发展。现有的石墨负极理论克容量仅372mAh/g,已无法满足未来对电池能量密度的需求...

    2023-10-08 来源:未知 浏览:70 次

    分享
  • 硬碳负极相关问题及解答汇总

    硬碳负极相关问题及解答汇总

    从钠离子电池负极这块,最新的产业化进度情况? A. 在工艺方面,钠离子电池和锂离子电池是相通 (产线/设备可切换 )的,且难度对于头部锂离子电池厂不大。从目前来...

    2023-10-08 来源:未知 浏览:76 次

    分享
  • 一文读懂xps测试原理

    一文读懂xps测试原理

    1 问题一:xps 的基本介绍、原理应用及分峰 1 简介 XPS (X-ray Photoelectron Spectroscopy)又称ESCA (Electron Spectroscopy for Chemical Analysis), 能够分析出了氢,氦以外的所有元素。测定精...

    2023-10-08 来源:未知 浏览:165 次

    分享
  • 2023年-山西-煤炭如何由燃料向原料、

    2023年-山西-煤炭如何由燃料向原料、

    在碳达峰碳中和背景下,煤炭不再作为单一燃料来使用,而是作为原料和材料迎来更广阔的发展空间。现代煤化工是提高煤炭清洁高效利用水平,实现煤炭由单一燃料向原...

    2023-10-06 来源:未知 浏览:73 次

    分享
  • 科普|什么是中试熟化?

    科普|什么是中试熟化?

    0 1 中试:科技成果向 生 产力转化的必要环节 中试生产是 中间性试验的简称,是科技成果向生产力转化的必要环节, 成果产业化的成败主要取决于中试的成败。中试是稳...

    2023-09-28 来源:未知 浏览:177 次

    分享
  • 人造石墨负极材料典型生产工艺

    人造石墨负极材料典型生产工艺

    石墨负极原料(主要为粉状碳粉)与沥青,通过混捏、成型、浸渍、焙烧、石墨化后得到负极材料(片状或柱状)。将焦炭(破碎、包覆、混捏)或碳粉石墨化(3000℃以...

    2023-09-21 来源:未知 浏览:173 次

    分享
  • 人造石墨负极材料生产原料有哪些?

    人造石墨负极材料生产原料有哪些?

    随着新能源行业的快速发展,锂电池负极材料爆发性增长,预计 2025年负极材料需求量约3 Mt,对原料石油焦和针状焦的需求将超过4 Mt。如何解决原料供需矛盾已然成为现...

    2023-09-21 来源:未知 浏览:184 次

    分享
  • 一文了解硬钠电硬碳负极

    一文了解硬钠电硬碳负极

    1、 硬碳负极成为首选,支持钠电快充过放 1.1、 石墨储钠困难,软碳容量不足,钠电池负极首选 硬碳 现有钠电池负极材料技术路线有金属氧化物、有机负极材料、基于转...

    2023-09-19 来源:未知 浏览:146 次

    分享
  • 智能电网行业产业链全景梳理及区域

    智能电网行业产业链全景梳理及区域

    智能电网行业主要上市公司: 宏力达(688330)、迦南智能(300880)、思源电气(002028)、华明装备(002270)、大烨智能(300670)、百利电气(600468)、中国西电(601179)、长高集团(002452) 智能...

    2023-09-17 来源:未知 浏览:63 次

    分享
  • 中国电力版图(2023年上半年)

    中国电力版图(2023年上半年)

    2023年上半年,我国 电力行业 延续绿色低碳转型趋势,非化石能源发电装机容量占全口径装机容量的51.5%,光伏发电成为我国第二大电源。 (来源: 微信公众号中国电力知...

    2023-09-17 来源:未知 浏览:146 次

    分享
  • 负极材料石墨化主流炉型及工艺

    负极材料石墨化主流炉型及工艺

    随着全球新能源行业的快速发展 , 新能源汽车 、 储能设备及消费类电子产品均出现了前所未有的强劲需求 , 石墨负极材料需求也随之显著增长 。 石墨负极材料作为锂...

    2023-09-06 来源:未知 浏览:161 次

    分享
  • 2023年全球及中国油系针状焦、煤系针

    2023年全球及中国油系针状焦、煤系针

    2023年全球及中国油系针状焦、煤系针状焦行业发展现状分析及下游市场需求规模前景预测 1、油系针状焦和煤系针状焦现状分析: 根据原料来源的不同,针状焦包括油系...

    2023-09-05 来源:未知 浏览:59 次

    分享
  • 渣油加氢崛起对延迟焦化带来的冲击

    渣油加氢崛起对延迟焦化带来的冲击

    近年来,在原油重质化和产品清洁化交互性推动下,渣油加氢技术得到了快速发展,未来5年渣油加氢产能复合增长率达4.98%,而延迟焦化复合增长率仅在0.14%,目前延迟焦...

    2023-09-05 来源:未知 浏览:124 次

    分享
换一换
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。