【引言】
固体电解质膜(SEI)是影响有机液态锂离子电池稳定性、倍率性能和循环寿命的关键因素,由于其复杂的成分结构及动态的固液界面,仅从实验上难以清晰地给出其结构成分特征、离子/电子传导特性、化学/电化学稳定性等物理图像,急切需要结合理论模拟来全面深入理解上述性质,进而加速SEI膜的改性研究进程。本文以SEI的形成、原位改性、性能预测和设计为主线,系统评述了近三十年SEI的多尺度计算模拟研究进展:综述了常见电解质溶液EC、VC、FEC还原形成SEI及利用添加剂进行改性的理论模拟研究;围绕电子隧穿、离子电导、界面电化学/化学/力学稳定性等问题,揭示了SEI理性设计的发展历程;阐明了融合不同时间-空间尺度模拟方法开展SEI综合性能理解并进行性能预测、添加剂筛选及高效SEI膜设计的必要性。
【成果简介】
近日,上海大学的施思齐教授与密歇根州立大学的Yue Qi教授以及中国科学院物理研究所的李泓研究员在npj computational materials合作发表题为“Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries”的专题综述文章,文章概括了近年来利用多尺度计算模拟方法对锂离子电池负极SEI膜的理解、预测与设计,详细综述了SEI的形成过程、形成原理及改性方法。
这篇专题综述是作者对其相关研究领域进行的综述总结,以计算类文章为主,并结合个人研究观点对领域内的热点难点进行了分析概述。文章第一作者为上海大学材料科学与工程学院的在读博士王爱平(Aiping Wang),自2016年师从上海大学施思齐教授以来,一直致力于电化学能量存储材料的物理基础和微观设计研究。
【图文导读】
1 概要
1.1 锂离子电池中的固态电解质膜(solid electrolyte interphase, SEI)
自从1991年索尼公司商业化生产出可充电锂电池以来,锂离子电池能量密度以每年5 Wh·kg-1的速度增长着,目前已达到160 Wh·kg-1,处于瓶颈状态,限制锂离子电池性能的一个重要困难是其复杂的电极/电解质界面,界面处不稳定的电化学平衡通常会导致固体电解质膜(SEI)的产生。SEI膜主要可看作双层结构,靠近电极界面的无机层(Li2CO3, LiF, Li2O)及电解液侧的半有机/有机层(dilithium ethylene glycol dicarbonate (Li2EDC) and ROLi, where R depends on the solvent),除相对宏观的双层结构外,整个SEI膜还存在着复杂且不均匀的马赛克结构。
图1a揭示了SEI膜产生的基本原理,即电极电位与电解质电化学窗口的不完美匹配,常见电解质溶液的LUMO均高于嵌锂石墨(~ 0.1 eV)和锂金属(0 eV)氧化还原电位所对应的的能量值,因而SEI的产生不可避免。图1b为常见电解质溶液成分的理论预测电位。
(Copyright: American Chemical Society).
图2总结了五十多年来对SEI膜微结构、成分及性能理解认识过程中的里程碑工作。
(Copyright: The Electrochemical Society).
(Copyright: Elsevier B.V.)
(Copyright: American Chemical Society)
(Copyright: Royal Society of Chemistry)
(Copyright: John Wiley & Sons)
1.2 锂离子电池SEI设计面临的挑战
图3刻画了石墨电极、合金化电极、锂金属电极在充放电循环中的SEI特征及其变化,不同的电极材料对SEI的性能要求存在重要差异,在SEI的改性设计过程中需充分考虑电极材料特性。
(Copyright: The Electrochemical Society).
1.3 综述概要: 负极表面SEI的模拟
第二部分介绍SEI的初始形成机制;基于第二部分形成原理上的理解,第三部分介绍电解质添加剂改性(“in-vivo” design)SEI的计算预测工作;第四部分综述已知SEI成分的具体性能,并将其与电池体系的性能老化联系起来,第五部分介绍非原位(“in-vitro” design)SEI的设计。
2 电解质溶液还原机制的模拟
2.1 EC溶剂分解机制
2.1.a EC分解电位的预测
表1总结了EC在不同断键情况下的分解反应路径及可能产物。
图4介绍了第一性原理分子动力学(AIMD)及经典分子动力学(eReaxFF反应力场)预测EC还原反应路径的比较,能够准确描述电荷转移是经典MD反应力场模拟方法在时间尺度上的精细化。
(Copyright: The Electrochemical Society)
(Copyright: American Chemical Society).
图5总结了两种预测电解质溶液氧化还原电位的方法。
(Copyright: American Chemical Society)
(Copyright: American Chemical Society).
2.1.b EC还原反应动力学预测
EC的单电子、双电子还原过程存在动力学依赖性,受充放电速率、电解质溶液成分、电极电位等因素的影响,进而影响最终产物的形成。
图6给出了动力学条件对SEI成分的影响情况。
(Copyright: Elsevier B. V.).
2.2 走向真实电解质溶液––其他溶剂/盐对SEI的影响
2.2.a 电解质溶液成分的还原电位
电解质溶液的任何单一成分(含溶剂及锂盐)均有其特定的分解电位,存在不同的优先级,且还原电位受Li+影响,当考虑Li+-solvent络合物时,还原动力学过程将发生变化。
2.2.b 锂盐阴离子影响
反应式(1) (2) (3)以LiPF6为代表说明锂盐对电解质溶剂还原可能产生的作用。
LiPF6 → LiF + PF5 (1)
LiPF6 + H2O → LiF + POF3 + 2HF (2)
EC + POF3 → CO2 + CH2FCH2OPF2O (3)
2.2.c 溶剂化结构的影响
SEI的生成与Li+溶剂化结构、成分、电极电位密切相关,其局部的变化将对电解质溶液的还原电位和动力学产生重要影响,如常见的还原电位、成分与电解质浓度的相关性。
2.3 负极表面状态的影响
不同的负极材料,如石墨、锂金属、合金化材料,同一材料的嵌锂程度、晶体学表面,同一表面的表面配位基团的均会对EC还原路径、电位及产物产生影响。此外,电极表面电位可调节其表面的电解质成分结构,进而影响其反应过程。
2.4 纳米尺度SEI膜
SEI膜的生长方式可分为两种:一是表面(‘surface-mediated’)机制,二是溶液(‘solution-mediated’)机制。
图7即为一种基于自由基电子转移机制预测的可超越电子隧穿距离的溶液生长模型:“近表面聚集方式”(‘near-shore aggregation’)生长。
(Copyright: The Electrochemical Society).
图8结合经典分子动力学及蒙特卡洛方法给出了纳米尺度的SEI“表面生长”模型。
(Copyright: American Chemical Society)
3. SEI的原位改性与设计
3.1 电解质添加剂的作用机制
电解质添加剂通常在电池首周循环过程中优先发生还原,并形成稳定的SEI,起到保护电解质溶液的作用。
3.1.a EC vs. PC及VC在碳表面的还原机制
通过对EC、PC及VC电解质成分在石墨负极表面还原机制的分析,解析PC还原形成SEI不稳定性根源,提取可形成有效SEI的电解质成分特征,进而帮助理解高通量筛选添加剂方法产生的基础。
3.1.b FEC及其分解产物: LiF
FEC在Si基、Sn基电极材料中表现出优异的钝化特性,通过比较FEC、EC、VC的还原特性,进一步揭示了电解质添加剂形成有效SEI的内在机理,为电解质筛选提供思路。
3.1.c ES (ethylene sulfite)对石墨负极PC共嵌的抑制
石墨电极中PC共嵌导致石墨层剥落老化,理论研究表明,含S有机物添加剂可抑制PC溶剂在石墨负极的共嵌。以ES为例,其还原电位高于PC,在PC发生共嵌或还原之前,ES已被还原,并生成稳定的SEI成分,如Li2SO3, (CH2OSO2Li)2, CH3CH(OSO2Li)CH2OCO2Li, and ROSO2Li等.
表2总结了不同电解质成分的结构及其理论/实验的还原电位。
3.2 采用高通量计算搜索新型电解质添加剂
大量有效SEI添加剂的理论研究表明,高还原电位、高亲电性、相对偶极矩、低化学硬度等参量均可作为高通量筛选添加剂的描述因子。
图9为利用高亲电性及低化学硬度为描述因子对EC的含F衍生物及烷基衍生物进行的高通量筛选研究。
(Copyright: Elsevier B. V.)
4. 从已知的SEI成分出发建立SEI构效关系
表3总结了SEI关键成分、结构以及利用计算模拟方法对其性能的探索。
4.1 无机SEI成分的电子隧穿行为
电极表面电子的供给是电解质溶液发生还原形成SEI膜的根源,SEI的高电子绝缘性可有效避免电解质溶液发生进一步的还原,已有理论模型建立起初始不可逆容量损失与SEI的电子隧穿性能的相关姓,但电子隧穿抑制模型仅能解释初期SEI形成原因,对于10~100 nm厚SEI的沉积溶解变化则需借助其它的电子传输机制,如极化子、间隙原子及自由基电子输运机制。
图10为EC在是否覆盖人工氧化物薄膜(ALD沉积Al2O3 and LiAlO2)电极表面的还原动力学模拟,其还原时间可从锂金属表面的10-12 s降至氧化物薄膜表面的10-4 ~ 10-5 s。
(Copyright: American Chemical Society).
4.2 SEI中的锂离子扩散:双层-双机制模型
离子可导是有效SEI的另一大特性,在覆盖SEI膜的电极上,离子迁移可分为三个部分:SEI/电解液侧的离子去溶剂化;SEI内部的离子迁移;电极/SEI侧的离子还原与沉积。
4.2.a SEI的离子电导率
离子扩散主要通过空位、间隙机制进行,其电导率与迁移能垒及缺陷浓度(缺陷形成能)相关,基于SEI离子传导机制的理解,在理论设计中,通过提高载流子浓度的异价元素掺杂、降低扩散能垒的空间电荷层构建均可提高离子电导率。
图11分别为第一性原理及经典分子动力学模拟的单一SEI膜成分的锂离子knock-off扩散机制。
(Copyright: American Chemical Society)
(Copyright: American Chemical Society).
图12为基于空间电荷层原理设计的SEI,其离子电导率获得极大提高,并得到实验验证。空间电荷层的形成是基于不同载流子(空位、间隙离子)材料界面发生的缺陷化学反应。
(Copyright: American Chemical Society).
4.2.b SEI/电解质界面的离子去溶剂化过程
Li+不同电解质溶剂的络合物、电场、SEI膜厚度、表面状态均会影响其去溶剂化能垒。
图13a为SEI对Li+去溶剂化过程影响的模拟;图13b为Li+去溶剂化、SEI中迁移、锂表面沉积过程的模拟。
(Copyright: American Chemical Society)
(Copyright: American Chemical Society)
4.3 SEI的力学性能 (弹性模量及吸附能)
在电化学循环过程中,电极材料由于Li的脱嵌将会发生体积形变,从而影响SEI膜与电极材料表面的稳定结合,由此我们提出SEI的韧性和粘合能力是其力学性能的两个关键指标。
4.4 SEI的化学稳定性
SEI成分的不稳定性将进一步导致不可逆容量的增加,比如部分SEI膜中的无机/有机物溶解于电解质溶液中,甚或发生进一步的分解,从而造成SEI膜的不完整性,正极材料中被还原溶解的过渡金属离子如Mn2+扩散至负极表面也会对SEI的生长造成不利影响。
图14表明FEC等含F电解质溶液在还原过程中形成的稳定氟化聚合有机物及无机物LiF,可起到稳定SEI的作用。
(Copyright: American Chemical Society)
4.5 SEI的生长及电池的老化––机理研究及多尺度模型
尽管初始形成的SEI结构成分较为单一,但随后的电化学循环使得SEI一直处于不断的沉积溶解变化中。根据物质守恒、电量守恒等一系列条件,并结合一系列直接/间接测量的物理参量,如电导率、模量、厚度等,已建立起大量描述SEI生长过程的数学模型,可预测出SEI的生长尺寸、不可逆容量损失、时间等参量之间的关系,进而对SEI膜甚至电池的综合性能进行预测。
5. SEI的非原位设计(in-vitro Design)
5.1 表面化学处理及其他
非原位设计在电池组装之前即对电极表面进行化学处理或者在电极表面人工沉积一层SEI膜。如利用反应气体(N2, O2, CO2, F2, SO2)对锂金属进行处理,在电极表面生成惰性膜,或者利用原子层沉积(Atomic layer deposition,ALD)/分子层沉积(molecular layer deposition,MLD)方法在电极表面精确均匀沉积一层保护膜(如Al2O3, alucone, Li2CO3, LiF, Li2EDC, LiPON等)。
5.2 包覆结构设计––考虑到SEI的动态演化
Si等合金化负极在充放电过程中体积变化剧烈,结合化学成分和几何结构的协同设计,利用ALD及MLD方法,可在电极材料表面沉积一层可在一定程度上抑制体积形变且能保持完整性的SEI膜。
图15为基于SEI膜力学性能要求设计的Si表面具有模量梯度Al2O3膜,根据其嵌锂程度不同,Al2O3膜将形成天然的模量梯度,使得该SEI膜可有效承受Si电极材料的部分体积膨胀而保持完整性。
(Copyright: Royal Society of Chemistry)
【团队介绍】
施思齐教授课题组属于上海大学材料科学与工程学院/材料基因组工程研究院,该课题组致力于电化学能量存储材料的原子尺度计算和实验验证研究,包括固态电解质/电极材料,固体电解质膜,催化剂等相关电池材料的物理机制探索,以及基于数据挖掘与机器学习的新材料设计与性能优化,相关的代表性研究论文发表在J. Am. Chem. Soc.,Nat Commun.,Phys. Rev. B等期刊上。
Yue Qi教授课题组属于密歇根州立大学(Michigan State University)化学工程与材料科学学院,其研究领域涵盖计算材料学、多尺度模拟、锂离子电池及燃料电池中的电化学力学性能耦合、界面及晶界工程,相关的代表性研究论文发表在Nat Commun.,Nano Letters等期刊上。
李泓研究员属于中国科学院物理研究所清洁能源实验室纳米离子与纳米能源材料研究组。其主要开展锂离子电池电极与电解质材料研究以及固体离子学相关基础科学问题研究。在Adv. Mater.,J. Am. Chem. Soc.等期刊发表SCI论文100余篇,为本领域文章引用全世界Top1%。
文章链接:Wang, A., Kadam, S., Li, H., Shi, S. & Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. (NPJ Comput. Mater., 2018, 4, 15 )
锂电池负极析锂不仅会导致电池性能下降、大大缩短循环寿命,而且会限制快速充电能力,甚至会造成燃烧、电池膨胀、甚至爆炸等安全隐患。 本文将介绍析锂的分类、...
2023-08-10 来源:未知 浏览:77 次
0 1 项目启动 包含:项目基本信息表、启动工作流程、启动工作计划、项目管理计划、项目组织结构、职责分工表、项目范围、培训计划、启动会议流程9个表格内容。 0...
2023-08-10 来源:未知 浏览:68 次
项目管理全流程 做项目管理,流程一般概括为 10大知识领域、49个过程和5大阶段 。只要掌握了这三个框架,那么项目管理就可以做到按照计划有条不紊地进行。 01 启动阶...
2023-08-10 来源:未知 浏览:156 次
前言 过程方法是质量管理体系构建的关键,基于过程方法策划和构建质量管理体系是确保质量管理体系有效实施,杜绝质量管理体系两层皮的关键。本文整理了组织质量...
2023-08-10 来源:未知 浏览:153 次
针状焦是炭素材料中大力发展的一个优质品种,具有低热膨胀系数、低空间系数、高导电率及易石墨化等优异性能,主要用于生产大规格高功率和超高功率石墨电极和特种...
2023-08-10 来源:未知 浏览:126 次
方法一 将数据导入Origin中新建的工作簿中,画出曲线图。 点击主界面的AnalysisPeaks and BaselinePeak AnalyzerOpen Dialog。即可得到右方的小窗口,并点击Fit Peaks(Pro)(拟合峰),再...
2023-08-02 来源:未知 浏览:63 次
关于拉曼数据,我们一般会关注两个峰的位置,分别是D峰和G峰。 D峰和G-峰均是C原子晶体的 Raman特征峰,分别在1350cm -1 和 1580 cm -1 附近,D峰反应的是晶格的碳缺陷,G峰...
2023-08-02 来源:未知 浏览:167 次
1、关于比表面积输出报告的一些数值的简单解释及一些名词代表内容和数值选定如下图 1 2 3 4 5 6 7BJH吸附孔径分布 8BJH脱附孔径分布 BJH吸附和脱附孔径分布绿色圈框起来的...
2023-08-02 来源:未知 浏览:150 次
物理吸附提供了测定催化剂表面积、平均孔径及孔径分布的方法(一般而言指N2吸脱附实验)。 在进行氮气吸脱附表征的时候一般会给出如下数据:氮气吸脱附曲线(Ni...
2023-08-02 来源:科学指南针 浏览:114 次
XRD分析软件Jade运行时出现339错误,提示OCX文件未正确注册怎么办?这个情况确实非常普遍, 特别是当你换了新电脑的时候,经常会出现这个问题,那么怎么解决呢? 操作...
2023-07-23 来源:未知 浏览:148 次
2020年年初国家科技部正式印发《关于破除科技评价中唯论文不良导向的若干措施(试行)》通知,明确要求破除唯论文论不良导向,打造中国高质量科技期刊。那么高质...
2023-07-21 来源:未知 浏览:143 次
在CV曲线中,从电位V1增加到V2时,电流发生变化,因此,式(3)可以写成它的最初形式 如何使用OriginLab软件从循环伏安CV曲线数据计算比容量( ) 比容量 的公式如下: 其...
2023-07-19 来源:未知 浏览:71 次
现代分析技术按测试手段的不同可分为X射线衍射分析(XRD),电子显微分析(TEM、SEM、EPMA、AFM)热分析(DTA、TG、DL、DSC和DMA)、振动光谱(FT-IR)、色谱分析(GC和LC)、核...
2023-07-19 来源:科学指南针 浏览:169 次
小编带你一起了解可用于高分子材料的结构表征仪器及方法! 红外光谱分析 红外光谱是一种分子吸收光谱,又称有机分子的振-转光谱。最突出的优点是具有高度的特征性...
2023-07-19 来源:科学指南针 浏览:98 次
1. XRD衍射花样都包括什么内容? 图1 X射线衍射谱分解 2.XRD谱图精修需要进行哪些工作? 软件 数据 初始模型(Le Bail等profile matching模式不需要) 精修 作图 A.软件。 软件有...
2023-07-19 来源:科学指南针 浏览:151 次
一、X光电子能谱分析的基本原理 X光电子能谱分析 的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电...
2023-07-19 来源:未知 浏览:142 次
红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下...
2023-07-19 来源:未知 浏览:144 次
1.2 测试对象 可对大多数的金属元素和部分非金属元素进行多元素分析,不适用于测试C、H、O元素 。适合分析的材料类型有:金属、化学品、药品、石油、陶瓷、食品、电...
2023-07-19 来源:未知 浏览:148 次
项目简介 常规 XRD数 据分析 可以做结晶度计算,晶粒尺寸计算,物相鉴定,晶面标注,全岩/黏土分析。 结晶度计算说明: 相对结晶度的计算采用如下公式 式中:Ic为结...
2023-07-19 来源:未知 浏览:53 次
煤中硫元素 1.镜质组 及其焦- 化后的衍 1.硫的赋存形态 煤中硫分为无机硫和有机硫两大类,此外还有一部分硫以元素硫的形式存在。无机硫包含硫化物硫和硫酸盐硫,其...
2023-07-15 来源:未知 浏览:54 次
写竞品分析文档是数据产品经理必备技能, 知己知彼百战不殆,竞品分析文档对于产品新人来说,几乎是必备的,无论是竞品分析也好,还是产品体验报告,最终的目的...
2023-07-15 来源:未知 浏览:72 次
安排工作,需要遵循六个基本步骤(尤其是第五步,经常被忽略),否则,就会出现管理失控。除了必要的步骤之外,管理者在安排工作之前,还要进行六点前提性思考,...
2023-07-15 来源:未知 浏览:155 次
1.奥格尔维定律:善用比我们自己更优秀的人 2.光环效应:全面正确地认识人才 3.不值得定律:让员工选择自己喜欢做的工作 4.蘑菇管理定律:尊重人才的成长规律 5.贝尔...
2023-07-15 来源:未知 浏览:145 次
Echarts是一个基于JavaScript的开源图表库,用于创建各种交互式的数据可视化图表。它由百度开发并维护,提供了丰富的图表类型和灵活的配置选项,使开发者能够轻松地将...
2023-07-15 来源:未知 浏览:162 次
01项目经理综合能力与研发模型 项目经理综合能力与研发模型 02项目整体管理 项目整体管理 03项目需求管理 04项目风险管理 05项目质量管理 06人力资源管理、沟通管理与...
2023-07-15 来源:未知 浏览:178 次
硬碳作为一种极有前途的钠离子负极候选材料,因其结构的可调性和中较高的容量而受到广泛关注。研究了硬碳中碳基质与钠离子储存机理的关系,为硬碳的结构工程提供...
2023-07-15 来源:未知 浏览:144 次
煤炭作为我们生活中能源利用的重要来源之一被广泛使用,现有的煤炭储存大多数是露天储存。这样存储的煤炭处于日晒雨淋的状态,优质的煤炭容易变质失去高燃烧价值...
2023-07-15 来源:未知 浏览:94 次
无论是褐煤或无烟煤,它们的结构单元都是由多芳香环组成,不同的是褐煤的结构单元中芳香环的缩聚程度小,同时芳香环上有较多的侧链;无烟煤的结构单元中的芳香环...
2023-07-15 来源:未知 浏览:194 次
一、 中国关键战略材料国产替代化现状及关键瓶颈 根据《新材料产业发展指南》所确定的关键战略材料领域发展重点,选取 稀土功能材料、先进半导体及芯片制造材料、...
2023-07-15 来源:未知 浏览:108 次
1 )国内储能市场参与者全景图 2 )储能分类 供应端(表前市场): 表前储能即安装于用户侧电表外的储能系统,包括安装于电源侧、电网侧的储能系统,由于装机规模...
2023-07-15 来源:未知 浏览:82 次
摘要 锂离子电池故障诱发的安全事故严重阻碍了其在交通、储能等领域的大规模应用,而精准有效的故障诊断方法是解决这一问题的关键。然而,不同场景下锂离子电池...
2023-07-15 来源:未知 浏览:118 次
在碳达峰碳中和背景下,煤炭不再作为单一燃料来使用,而是作为原料和材料迎来更广阔的发展空间。现代煤化工是提高煤炭清洁高效利用水平,实现煤炭由单一燃料向原...
2023-07-15 来源:未知 浏览:73 次
负极行业更新:二季度惨烈见底,关注底部投资机会 这两周连续调研了一些负极企业,更新如下: 1、为什么是二季度? 售价端:3-4月有一轮价格战,反应在报表端预计...
2023-07-15 来源:未知 浏览:140 次
辅导与知识管理,是培训体系落地及培训项目落地的重要保证, 也是管理者必备的领导力。 在721人才发展模型中,辅导在20%的向他人学习中,具有举足轻重的作用。并且...
2023-07-15 来源:未知 浏览:172 次
管理的核心是管人,理事。 理事是一个逻辑命题,是可以找到清晰的答案,并有着明确的学习方向。 而管人则是非逻辑命题,与人性息息相关,也是管理中最难的部分。...
2023-07-15 来源:未知 浏览:151 次
人与人最本质的区别就在于,看问题的维度不一样。高维的人,很容易就能理解低维的人;而低维的人,可能永远没办法理解高维的人。这与你的出身无关,与你的财富多...
2023-07-15 来源:未知 浏览:173 次
在各类沟通场景中,清晰、有逻辑的表达对于传达信息至关重要。SCQA模型(Situation,Complication,Question,Answer)作为《金字塔原理》中的一种结构化表达工具,不仅能够帮...
2023-07-15 来源:未知 浏览:124 次
不管是你硕士还是博士,也不管你是写小论文还是大论文, 想要提高专家评审通过的概率,就得在创新上下功夫 。 这是身边人都会告诉你的。 然而,想要获得 突破性的...
2023-07-15 来源:未知 浏览:137 次
from everybody knows to nobody knows,对如何讲学术故事形容的非常好! 我补充一点,这里面这个everybody也是有讲究的,比如你的文章要投science/nature,那这个everybody可能就得是所...
2023-07-15 来源:未知 浏览:179 次
远景动力推出全球首批“碳中和储能电池”,同时宣布,已经于2022年年底实现全球业务运营碳中和,2028年底实现全价值链碳中和。...
2023-07-15 来源:未知 浏览:194 次
2023太原中考录取 1.2023山西中考太原录取 最低提档分数线 525 分 2.山大附第一志愿分数线为 682 分 3.五中青年路校区分数线为 674 分,龙城校区为 669 分 4.成成晋源校区分数...
2023-07-15 来源:未知 浏览:146 次
1、电化学储能行业概况 电化学储能定义 电化学储能就是电池储能,其技术特点均是利用化学元素作为储能介质,充、放电过程,实际上就是储能介质的化学反应或者变价...
2023-07-13 来源:未知 浏览:60 次
1、中国电化学储能新增装机规模整体呈现上涨趋势 从新增装机规模来看,近年来中国电化学储能新增装机规模整体呈现上涨趋势。2021年,中国电化学储能新增装机规模大...
2023-07-13 来源:未知 浏览:143 次
一、产业链情况 储能是指通过介质或设备把能量转化为在自然条件下较为稳定的存在形态并储存起来,以备在需要时再释放的过程。一般可根据能量存储形式的不同分为...
2023-07-13 来源:未知 浏览:80 次
从当前的国自然评审进程上,当前已经进入人才类、重点类的项目答辩评审,稍晚后会进行学科(面青地)的评审。 对于国自然的会评,分为几个部分: 1、对于人才类...
2023-07-10 来源:未知 浏览:106 次
很多技术人员都想成为管理者,做项目经理也是一条路径,但是我见到过很多技术人员,虽然技术方面很厉害,但是做项目管理却很难做好。 这本身是一个技术思维和管...
2023-07-10 来源:未知 浏览:141 次
为什么起这个标题? 是近几年来,对多家工厂/不同的企业,运营活动的现况把握与思考。 班组太重要了,企业的经营活动,创造价值的,能够为老板赚钱的都在现场,在...
2023-07-10 来源:未知 浏览:108 次
1、工具可以大大的提高效率,人和动物最大的区别是创造工具、使用工具 ,深度复盘这个过程,就会看到不一样的价值点; (1)为了更好(多、快、好、省)的去完成...
2023-07-10 来源:未知 浏览:116 次