钠离子电池技术的发展与商业化进程

在过去十年中,储能领域已经逐渐进入后锂电时代,其标志便是钠离子电池的复兴。早在2010年前后,锂离子电池正深刻改变社会生活之际,科研界就已经注意到锂资源的匮乏以及全球分布严重不均的问题。因此,钠离子电池技术又逐渐回到了科研界的视野,并且凭借着在研究锂离子电池技术上积累的经验得到了快速的发展。仅仅五年以后,即2015年,第一代钠离子电池就已经迈入了商业化的进程。(如图1)
宝藏综述:钠离子电池技术的发展与商业化进程
图1:与钠离子电池技术相关的学术论文发表数量及专利数量(数据统计截止至2020年5月)
 
钠离子电池的工作原理及结构与锂离子电池十分相似。因此,发展钠离子电池技术的关键同样在于找到合适的正、负极材料以及电解液。
 
【关键技术发展情况】
1、负极侧
目前科研界开发出了金属氧化物(例如Na(Fe,Ti)O4、TiO2、Na2Ti3O7等)、有机材料、基于转化及合金化反应的材料(例如Sb基、P基等)、碳基材料等四大类。图2给出了一些代表性负极材料的能量密度-比容量图。
宝藏综述:钠离子电池技术的发展与商业化进程
图2:NIB中使用的各种负极材料的能量密度与比容量范围,包括硬碳(橙色)、锡基(红色)和锑基(深绿色)合金以及磷基化合物(浅绿色)
 
金属氧化物具有稳固的无机骨架结构往往展现出超长的循环寿命,但因其具有相对较高的分子质量,所以比容量一般都偏低,难以满足商业化的需要。
 
有机负极材料最大的特点就是成本低且结构多样,但是仍然存在很多问题,包括:较低的首圈库伦效率、循环过程中的极化问题、低电子电导、有机分子在电解质中的溶解问题等等。总的来说,有机钠离子电池的发展具有很大潜力,但目前对这类材料的研究仍然处在起步阶段。
 
基于转化及合金化反应的负极材料存在的最大问题即是脱嵌钠过程中巨大的体积变化导致活性物质的粉化,致使容量迅速衰减。
 
碳基负极材料主要是指无定形碳(包括硬碳和软碳)目前主要的工作集中于抑制循环过程中的容量衰减以及提升首圈库伦效率。软碳以及还原石墨烯氧化物的比容量可以做到很高,但是相应的工作电压也高。因此对这些材料的研究重点除了提升首圈库伦效率,还需要进一步降低工作电压。从图3中可以看出,硬碳(HC)通常工作电位较低且具有比较高的容量,也因此,目前商业化的钠离子电池产品所使用的负极几乎都是硬碳
宝藏综述:钠离子电池技术的发展与商业化进程
图3:不同碳基材料的比容量和平均氧化电位。
 
2、正极侧
由于钠和过渡金属离子之间较大的半径差异,有许多功能性的结构都可以实现钠离子的可逆脱嵌。主要的正极材料包括:层状过渡金属氧化物、聚阴离子化合物、普鲁士蓝类似物(PBA)、基于转化反应的材料以及有机材料。在上述材料类型中,层状过渡金属氧化物(NaxTMO2)、聚阴离子化合物、普鲁士蓝类似物(PBA,Na2M[Fe(CN)6],其中 M = Fe, Co, Mn, Ni, Cu, 等等)是目前最具发展前景三类材料。
 
层状过渡金属氧化物材料可以实现极佳的电化学性能(较高的比容量、工作电压以及大于1000圈的循环寿命),其过渡金属元素往往包含地壳中含量丰富的元素,而且合成过程简单,可以满足规模化生产的要求。
 
聚阴离子材料工作电压高(对钠电压可高达4V),并且结构稳定,缺点是离子电导和电子电导率较低,而且较大的分子质量也拉低了比容量。其中两种快离子导体材料Na3V2(PO4)3 和 Na3V2O2x(PO4)2F3-2x 因具有相当好的倍率性能和循环寿命在众多聚阴离子材料中脱颖而出。但是这些材料中的变价元素V具有一定毒性。
 
普鲁士蓝类似物具有开放式的骨架结构和很强的结构稳定性,骨架内具有大量的氧化还原位点。目前这类材料可以实现很高的能量密度(大约500–600 Wh kg-1),而且可以通过较低的温度合成。但是这种材料由于导电性不好需要加入大量碳,这降低了体积比容量。由于这种物质一般都是在水介质中合成的,其结构中总会包含一些配位水或者间隙水,这不利于其在非水系体系的应用,但却有利于实现在水系体系中杰出的循环稳定性。另外,由于氰酸根的存在这种材料还有潜在的毒性。
 
基于转化反应的正极材料具有很高的理论容量,但是这种材料也具有基于转化反应和合金化反应的通病——过大的体积变化。另外这类材料还具有较大的过电势以及较慢的Na离子传导速度。对于这类材料的开发仍处于起始阶段。
 
有机正极材料不含过渡金属元素,成本更低并且具有更小的分子量,另外还具有结构多样性、安全性,机械柔性等。羰基化合物(PTCDA和硫氰酸二钠)是近年来被研究最广泛的一类有机正极材料,其主要的缺点是会溶于有机电解液导致容量迅速衰减,其较低的电导率也导致倍率性能不佳。目前此类材料的发展也出于起始阶段。
宝藏综述:钠离子电池技术的发展与商业化进程
图4:钠离子电池体系中最具代表性的负极材料总览。
 
总的来说(如图4),层状氧化物在三种最有前景的材料中展现了最高的理论容量。聚阴离子具有较低的理论比容量但是它们的实验比容量非常接近理论容量。不同种类PBA的理论比容量相差较大,并且由于存在意料之外的储钠位点有时展现出比理论容量更高的容量。三种类型的材料的实验比容量大概都在100-200mAh/g之间,这对于制造商业化的电池来说足够了。
 
3、电解液
目前开发出的钠离子电池的电解质与锂离子电池同样丰富,包括水系、有机系、固态三大类。它们在不同温度下的离子电导率如图5所示。
宝藏综述:钠离子电池技术的发展与商业化进程
图5:代表性钠基电解质的温度-离子导电性概览
 
水系电解质成本低、安全性高、环境友好,但是由于水的分解电压限制,其工作窗口太窄,同时还得考虑与电极的适配问题,例如会不会产生腐蚀?如果是嵌入型电极材料,氢离子会不会嵌入进去?
 
非水系液态电解质仍然是发展最成熟的体系。目前最常见的溶剂是EC:PC 、 EC:DEC也有部分电解液使用PC作单一溶剂。NaClO4则是目前使用最多的钠盐,它具有良好的电化学行为,成本低,但是缺点是有爆炸的危险。FEC是最常用的添加剂,有利于在负极形成薄且稳定的SEI。
 
离子液体电解液通常在60-80℃展现最佳的性能。在室温下,其离子电导率太低,粘度又太高。离子液体中研究最多的有机分子是咪唑和吡咯烷。对于这种电解液,钠盐的浓度是一个关键性因素,较高的钠盐浓度具有更好的稳定性,并且能经受住更大的电流,但相应成本也会上升。离子液体电解质可以被视为是下一代钠离子电解质,但是其成本还需进一步下降,工作温度也需要进一步优化。
 
固态聚合物电解质含有钠盐和弹性聚合物基体,具有良好的通用性、灵活性和热力学稳定性,但在室温下的离子电导率很差。通过调节电解质盐(NaPF6、NaTFI、NaFSI…)和聚合物基体,可以提高这些体系的离子电导率。聚环氧乙烷(PEO)是最常见的能溶解多种钠盐的聚合物。
 
复合固态聚合物电解质由无机填料(SiO2, Al2O3, TiO2…)和固态聚合物电解质组成,由于结晶度和玻璃化转变温度(Tg)的降低以及无机填料表面基团与聚合物链和盐的相互作用,提高了离子导电性。
 
无机固态电解质包括陶瓷体系,因此比较硬,比如氧化物、磷酸盐、亚硫酸盐或氢化物等。其中β″-Al2O3 和 快离子导体 Na3Zr2Si2PO12是至今为止使用的最多的固态陶瓷电解质。无机固态电解质一般只适合高温或中高温状态下使用,例如Na-S电池。其最大的问题在于高硬度带来的界面接触问题。对此,科研界提出了用NASICON电解质加少量离子液体组合的方式来缓解界面问题。玻璃材料的使用是另一种前进方向,由于它们易于成型或形成薄膜,它们可以提供与电极的良好接触。在这方面,硫化物化学是最有前途的化学之一。在LIBs玻璃状硫化物方面积累的经验激发了人们对Na10GeP2S12、Na10SnP2S12或Na3PS4等硫化物的兴趣。
 
准固态电解质即指使用液体成分作为增塑聚合物电解质(PPE)以及凝胶聚合物电解质,其中液体增塑剂的含量在50 %左右。
宝藏综述:钠离子电池技术的发展与商业化进程
图6:总结了上文介绍的固体和准固体电解质的主要优缺点。
 
总之,水系和非水系液态电解质的离子电导率值最高,尽管前者的电化学稳定性窗口较低,后者存在与SEI稳定性和可燃性相关的问题,但这些缺点可以通过设计功能性固体电解质来克服。
 
4、商业化情况
目前商业化钠离子电池使用的负极材料都是硬碳。而三类主要正极材料都已经有实现商业化生产的例子。英国的Faradion公司、中国的中科海钠公司都开发出了具有较高比容量的层状氧化物正极材料,由其构成的全电池甚至可以超过锂离子电池中的磷酸铁锂电池。聚阴离子类的快离子导体以及PBA类材料的正极材料能量密度低一些,但却可以实现极高的功率密度,适用于高功率输出设备的需求。美国的Novasis Energies、隶属于斯坦福的Natron Energy公司则成功开发出了以PBA为正极的的钠离子电池。
宝藏综述:钠离子电池技术的发展与商业化进程
7:按比能量和发布年份列出的商用非水系钠离子电池
 
英国的法拉第公司(Faradion)在2015年制造了第一个电动自行车的非水系钠离子电池组。这款电动自行车使用了软包电池结构的400 Wh电池组。该电池是使用钠镍层状氧化物NaaNi(1-x-y-z)MnxMgyTizO2作为正极制造的。目前,该公司声称能够生产12 Ah 150–160 Wh kg-1(或270–290 Wh L-1)的电池,在1C倍率下循环寿命超过3000圈,并且能够在-20和60℃之间运行。
 
同样是2015年,法国电化学储能研究网络(French research network on electrochemical energy storage)推出了第一个18650 Na离子电池,即所谓的RS2E。电池使用Na3V2(PO4)2F3作为正极材料,比能量为90 Wh kg-1。之后,使用同样的技术,法国Tiamat开发出了能够达到2到5 kW kg-1的功率密度(相对于LIBs增加了5倍)的电池,该电池能够在5分钟内充满电。
 
2015年,美国夏普实验室与J.B. Goodenough密切合作,证明普鲁士白阴极(Na1.92Fe[Fe(CN)6])可以成功规模生产,并组装得到电压为3 V的电池。在这一背景下,Novasis Energies最近通过改进电池的组成和加工工艺,使用NaxMnFe(CN)6得到了容量密度为100–130 Wh kg-1(或150–210 Wh L-1)的电池。
 
2020年,中国的中科海钠开发出了基于O3相复合正极材料的10 Ah袋式和18650圆柱形电池,重量能量密度达到135 Wh kg-1,放电速率可从1C变化到5C,容量保留率达到90%,在3C下可循环超过3000次。此外,电池可在−30℃下以0.3 C的速率放电,同时仍保留80%的室温容量,并在高达85℃的温度下储存3天后,在后续循环中可完全恢复容量。
 
来自斯坦福大学的Natron Energy是一家新成立的公司,它使用PBA作为正极和负极,并用水系电解质开发了一种电池。与有机电池相比,这种电池的能量密度虽然更低,但却具有高达775 W kg-1(或1550 W L-1)的功率密度。电池能够在12C下运行25000圈,容量保持率达70%。
 
在性能方面,室温非水系NIB已经具替代部分锂离子电池的能力(图7)。此外,考虑到它们仍处于商业化初期,而且大多数研究工作都集中在电极活性材料上,电解质、粘合剂、集电器和其他电池组件的进一步改进还将使钠离子电池得到进一步发展。
 
在未来,钠-空气或钠-氧(Na–O2)和室温钠-硫(Na–S)电池都是很有前途的高能量密度存储技术,可以满足静态储能的要求。

宝藏综述:钠离子电池技术的发展与商业化进程

图8:二次电池的理论和实际能量密度,包括NIB钠离子电池、LIB锂离子电池、HT-Na–S高温钠硫电池、RT-Na–S室温钠硫电池、Li-S锂硫电池、Na–O2钠氧电池和Li-O2锂氧电池。RT-Na-S和Na-O2的理论值分别基于Na2S和Na2O2的放电产物。绿色字体的电池系统已经商业化,灰色字体的电池系统已经在研究界得到广泛的研究,红色字体的电池系统则需要进一步开发。
 
 
Eider Goikolea, Verónica Palomares, Shijian Wang, Idoia Ruiz de Larramendi, Xin Guo, Guoxiu Wang, Teofilo Rojo,Na-Ion Batteries—Approaching Old and New Challenges. Adv. Energy Mater. 2020, DOI:10.1002/aenm.202002055

科研聚焦
猜你喜欢
热门推荐
  • 【知识共享】锂电池负极析锂的原因

    【知识共享】锂电池负极析锂的原因

    锂电池负极析锂不仅会导致电池性能下降、大大缩短循环寿命,而且会限制快速充电能力,甚至会造成燃烧、电池膨胀、甚至爆炸等安全隐患。 本文将介绍析锂的分类、...

    2023-08-10 来源:未知 浏览:77 次

    分享
  • 58页PPT| 钠离子电池关键材料

    58页PPT| 钠离子电池关键材料

    ...

    2023-08-10 来源:未知 浏览:63 次

    分享
  • 16个经典项目管理模型图表

    16个经典项目管理模型图表

    ...

    2023-08-10 来源:未知 浏览:81 次

    分享
  • 项目质量管理的体系和研发流程就看

    项目质量管理的体系和研发流程就看

    ...

    2023-08-10 来源:未知 浏览:93 次

    分享
  • 项目启动-结尾64份管理工具表格文档

    项目启动-结尾64份管理工具表格文档

    0 1 项目启动 包含:项目基本信息表、启动工作流程、启动工作计划、项目管理计划、项目组织结构、职责分工表、项目范围、培训计划、启动会议流程9个表格内容。 0...

    2023-08-10 来源:未知 浏览:68 次

    分享
  • 搞定项目管理,只需要这6张思维导图

    搞定项目管理,只需要这6张思维导图

    项目管理全流程 做项目管理,流程一般概括为 10大知识领域、49个过程和5大阶段 。只要掌握了这三个框架,那么项目管理就可以做到按照计划有条不紊地进行。 01 启动阶...

    2023-08-10 来源:未知 浏览:156 次

    分享
  • 干货 | 18张典型的质量管理体系过程流

    干货 | 18张典型的质量管理体系过程流

    前言 过程方法是质量管理体系构建的关键,基于过程方法策划和构建质量管理体系是确保质量管理体系有效实施,杜绝质量管理体系两层皮的关键。本文整理了组织质量...

    2023-08-10 来源:未知 浏览:153 次

    分享
  • 湖南大学刘洪波教授|石墨负极材料的

    湖南大学刘洪波教授|石墨负极材料的

    ...

    2023-08-10 来源:未知 浏览:178 次

    分享
  • 2023年中国针状焦行业格局及重点企业

    2023年中国针状焦行业格局及重点企业

    针状焦是炭素材料中大力发展的一个优质品种,具有低热膨胀系数、低空间系数、高导电率及易石墨化等优异性能,主要用于生产大规格高功率和超高功率石墨电极和特种...

    2023-08-10 来源:未知 浏览:126 次

    分享
  • 两种方法用Origin得到Raman数据中峰的积

    两种方法用Origin得到Raman数据中峰的积

    方法一 将数据导入Origin中新建的工作簿中,画出曲线图。 点击主界面的AnalysisPeaks and BaselinePeak AnalyzerOpen Dialog。即可得到右方的小窗口,并点击Fit Peaks(Pro)(拟合峰),再...

    2023-08-02 来源:未知 浏览:63 次

    分享
  • Origin分析拉曼数据的两种方法

    Origin分析拉曼数据的两种方法

    关于拉曼数据,我们一般会关注两个峰的位置,分别是D峰和G峰。 D峰和G-峰均是C原子晶体的 Raman特征峰,分别在1350cm -1 和 1580 cm -1 附近,D峰反应的是晶格的碳缺陷,G峰...

    2023-08-02 来源:未知 浏览:167 次

    分享
  • BET比表面测试原始数据解读

    BET比表面测试原始数据解读

    1、关于比表面积输出报告的一些数值的简单解释及一些名词代表内容和数值选定如下图 1 2 3 4 5 6 7BJH吸附孔径分布 8BJH脱附孔径分布 BJH吸附和脱附孔径分布绿色圈框起来的...

    2023-08-02 来源:未知 浏览:150 次

    分享
  • 各个方面快速学会如何对BET报告解读

    各个方面快速学会如何对BET报告解读

    物理吸附提供了测定催化剂表面积、平均孔径及孔径分布的方法(一般而言指N2吸脱附实验)。 在进行氮气吸脱附表征的时候一般会给出如下数据:氮气吸脱附曲线(Ni...

    2023-08-02 来源:科学指南针 浏览:114 次

    分享
  • XRD分析软件Jade运行时出现339错误,提

    XRD分析软件Jade运行时出现339错误,提

    XRD分析软件Jade运行时出现339错误,提示OCX文件未正确注册怎么办?这个情况确实非常普遍, 特别是当你换了新电脑的时候,经常会出现这个问题,那么怎么解决呢? 操作...

    2023-07-23 来源:未知 浏览:148 次

    分享
  • 37本国产SCI期刊推荐!涵盖9大领域,

    37本国产SCI期刊推荐!涵盖9大领域,

    2020年年初国家科技部正式印发《关于破除科技评价中唯论文不良导向的若干措施(试行)》通知,明确要求破除唯论文论不良导向,打造中国高质量科技期刊。那么高质...

    2023-07-21 来源:未知 浏览:143 次

    分享
  • Origin怎么从CV曲线中求比电容

    Origin怎么从CV曲线中求比电容

    在CV曲线中,从电位V1增加到V2时,电流发生变化,因此,式(3)可以写成它的最初形式 如何使用OriginLab软件从循环伏安CV曲线数据计算比容量( ) 比容量 的公式如下: 其...

    2023-07-19 来源:未知 浏览:71 次

    分享
  • 未知材料分析中使用的现代分析方法

    未知材料分析中使用的现代分析方法

    现代分析技术按测试手段的不同可分为X射线衍射分析(XRD),电子显微分析(TEM、SEM、EPMA、AFM)热分析(DTA、TG、DL、DSC和DMA)、振动光谱(FT-IR)、色谱分析(GC和LC)、核...

    2023-07-19 来源:科学指南针 浏览:169 次

    分享
  • 未知结构材料剖析表征中常用九种仪

    未知结构材料剖析表征中常用九种仪

    小编带你一起了解可用于高分子材料的结构表征仪器及方法! 红外光谱分析 红外光谱是一种分子吸收光谱,又称有机分子的振-转光谱。最突出的优点是具有高度的特征性...

    2023-07-19 来源:科学指南针 浏览:98 次

    分享
  • XRD精修:精修软件和参考模型从哪里

    XRD精修:精修软件和参考模型从哪里

    1. XRD衍射花样都包括什么内容? 图1 X射线衍射谱分解 2.XRD谱图精修需要进行哪些工作? 软件 数据 初始模型(Le Bail等profile matching模式不需要) 精修 作图 A.软件。 软件有...

    2023-07-19 来源:科学指南针 浏览:151 次

    分享
  • X射线光电子能谱(XPS)谱图分析

    X射线光电子能谱(XPS)谱图分析

    一、X光电子能谱分析的基本原理 X光电子能谱分析 的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电...

    2023-07-19 来源:未知 浏览:142 次

    分享
  • 红外分析口诀

    红外分析口诀

    红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下...

    2023-07-19 来源:未知 浏览:144 次

    分享
  • 成分定性定量分析有哪些测试方法?

    成分定性定量分析有哪些测试方法?

    1.2 测试对象 可对大多数的金属元素和部分非金属元素进行多元素分析,不适用于测试C、H、O元素 。适合分析的材料类型有:金属、化学品、药品、石油、陶瓷、食品、电...

    2023-07-19 来源:未知 浏览:148 次

    分享
  • 常规XRD数据分析

    常规XRD数据分析

    项目简介 常规 XRD数 据分析 可以做结晶度计算,晶粒尺寸计算,物相鉴定,晶面标注,全岩/黏土分析。 结晶度计算说明: 相对结晶度的计算采用如下公式 式中:Ic为结...

    2023-07-19 来源:未知 浏览:53 次

    分享
  • 煤中硫的赋存形态及测定方法

    煤中硫的赋存形态及测定方法

    煤中硫元素 1.镜质组 及其焦- 化后的衍 1.硫的赋存形态 煤中硫分为无机硫和有机硫两大类,此外还有一部分硫以元素硫的形式存在。无机硫包含硫化物硫和硫酸盐硫,其...

    2023-07-15 来源:未知 浏览:54 次

    分享
  • 16种竞品分析方法,数据产品经理必备

    16种竞品分析方法,数据产品经理必备

    写竞品分析文档是数据产品经理必备技能, 知己知彼百战不殆,竞品分析文档对于产品新人来说,几乎是必备的,无论是竞品分析也好,还是产品体验报告,最终的目的...

    2023-07-15 来源:未知 浏览:72 次

    分享
  • 多元思维模型知识体系

    多元思维模型知识体系

    ...

    2023-07-15 来源:未知 浏览:92 次

    分享
  • 工作安排的六个步骤

    工作安排的六个步骤

    安排工作,需要遵循六个基本步骤(尤其是第五步,经常被忽略),否则,就会出现管理失控。除了必要的步骤之外,管理者在安排工作之前,还要进行六点前提性思考,...

    2023-07-15 来源:未知 浏览:155 次

    分享
  • 管人、用人、育人、留人之道,十分

    管人、用人、育人、留人之道,十分

    1.奥格尔维定律:善用比我们自己更优秀的人 2.光环效应:全面正确地认识人才 3.不值得定律:让员工选择自己喜欢做的工作 4.蘑菇管理定律:尊重人才的成长规律 5.贝尔...

    2023-07-15 来源:未知 浏览:145 次

    分享
  • Echarts案例网站合集

    Echarts案例网站合集

    Echarts是一个基于JavaScript的开源图表库,用于创建各种交互式的数据可视化图表。它由百度开发并维护,提供了丰富的图表类型和灵活的配置选项,使开发者能够轻松地将...

    2023-07-15 来源:未知 浏览:162 次

    分享
  • 项目经理管理模型与工具

    项目经理管理模型与工具

    01项目经理综合能力与研发模型 项目经理综合能力与研发模型 02项目整体管理 项目整体管理 03项目需求管理 04项目风险管理 05项目质量管理 06人力资源管理、沟通管理与...

    2023-07-15 来源:未知 浏览:178 次

    分享
  • 预氧化策略对烟煤硬碳的微晶调控以

    预氧化策略对烟煤硬碳的微晶调控以

    硬碳作为一种极有前途的钠离子负极候选材料,因其结构的可调性和中较高的容量而受到广泛关注。研究了硬碳中碳基质与钠离子储存机理的关系,为硬碳的结构工程提供...

    2023-07-15 来源:未知 浏览:144 次

    分享
  • 建议收藏 | 煤炭的存储方法注意事项

    建议收藏 | 煤炭的存储方法注意事项

    煤炭作为我们生活中能源利用的重要来源之一被广泛使用,现有的煤炭储存大多数是露天储存。这样存储的煤炭处于日晒雨淋的状态,优质的煤炭容易变质失去高燃烧价值...

    2023-07-15 来源:未知 浏览:94 次

    分享
  • 【煤炭知识】煤的氧化与自燃机理

    【煤炭知识】煤的氧化与自燃机理

    无论是褐煤或无烟煤,它们的结构单元都是由多芳香环组成,不同的是褐煤的结构单元中芳香环的缩聚程度小,同时芳香环上有较多的侧链;无烟煤的结构单元中的芳香环...

    2023-07-15 来源:未知 浏览:194 次

    分享
  • 4大类型,37种材料!中国关键战略材

    4大类型,37种材料!中国关键战略材

    一、 中国关键战略材料国产替代化现状及关键瓶颈 根据《新材料产业发展指南》所确定的关键战略材料领域发展重点,选取 稀土功能材料、先进半导体及芯片制造材料、...

    2023-07-15 来源:未知 浏览:108 次

    分享
  • 储能产业全景图

    储能产业全景图

    1 )国内储能市场参与者全景图 2 )储能分类 供应端(表前市场): 表前储能即安装于用户侧电表外的储能系统,包括安装于电源侧、电网侧的储能系统,由于装机规模...

    2023-07-15 来源:未知 浏览:82 次

    分享
  • 电池智能管理专辑|锂离子电池故障诊

    电池智能管理专辑|锂离子电池故障诊

    摘要 锂离子电池故障诱发的安全事故严重阻碍了其在交通、储能等领域的大规模应用,而精准有效的故障诊断方法是解决这一问题的关键。然而,不同场景下锂离子电池...

    2023-07-15 来源:未知 浏览:118 次

    分享
  • 2023年-山西-煤炭如何由燃料向原料、

    2023年-山西-煤炭如何由燃料向原料、

    在碳达峰碳中和背景下,煤炭不再作为单一燃料来使用,而是作为原料和材料迎来更广阔的发展空间。现代煤化工是提高煤炭清洁高效利用水平,实现煤炭由单一燃料向原...

    2023-07-15 来源:未知 浏览:73 次

    分享
  • 2023年负极行业二季度惨烈见底

    2023年负极行业二季度惨烈见底

    负极行业更新:二季度惨烈见底,关注底部投资机会 这两周连续调研了一些负极企业,更新如下: 1、为什么是二季度? 售价端:3-4月有一轮价格战,反应在报表端预计...

    2023-07-15 来源:未知 浏览:140 次

    分享
  • 如何在辅导中做到因材施教:这里有

    如何在辅导中做到因材施教:这里有

    辅导与知识管理,是培训体系落地及培训项目落地的重要保证, 也是管理者必备的领导力。 在721人才发展模型中,辅导在20%的向他人学习中,具有举足轻重的作用。并且...

    2023-07-15 来源:未知 浏览:172 次

    分享
  • 管人三件事:人才、人效与人性

    管人三件事:人才、人效与人性

    管理的核心是管人,理事。 理事是一个逻辑命题,是可以找到清晰的答案,并有着明确的学习方向。 而管人则是非逻辑命题,与人性息息相关,也是管理中最难的部分。...

    2023-07-15 来源:未知 浏览:151 次

    分享
  • 思维的五个维度

    思维的五个维度

    人与人最本质的区别就在于,看问题的维度不一样。高维的人,很容易就能理解低维的人;而低维的人,可能永远没办法理解高维的人。这与你的出身无关,与你的财富多...

    2023-07-15 来源:未知 浏览:173 次

    分享
  • SCQA模型:揭秘高效的“结构化表达”

    SCQA模型:揭秘高效的“结构化表达”

    在各类沟通场景中,清晰、有逻辑的表达对于传达信息至关重要。SCQA模型(Situation,Complication,Question,Answer)作为《金字塔原理》中的一种结构化表达工具,不仅能够帮...

    2023-07-15 来源:未知 浏览:124 次

    分享
  • 被嫌作图难看?看这里!科研审美积

    被嫌作图难看?看这里!科研审美积

    1 科研审美积累...

    2023-07-15 来源:未知 浏览:82 次

    分享
  • 作图好看有多重要?看完你就懂了~科

    作图好看有多重要?看完你就懂了~科

    不管是你硕士还是博士,也不管你是写小论文还是大论文, 想要提高专家评审通过的概率,就得在创新上下功夫 。 这是身边人都会告诉你的。 然而,想要获得 突破性的...

    2023-07-15 来源:未知 浏览:137 次

    分享
  • 顶刊一作写作思路|关于如何把文章

    顶刊一作写作思路|关于如何把文章

    from everybody knows to nobody knows,对如何讲学术故事形容的非常好! 我补充一点,这里面这个everybody也是有讲究的,比如你的文章要投science/nature,那这个everybody可能就得是所...

    2023-07-15 来源:未知 浏览:179 次

    分享
  • 储能T时代,电池如何零碳?

    储能T时代,电池如何零碳?

    远景动力推出全球首批“碳中和储能电池”,同时宣布,已经于2022年年底实现全球业务运营碳中和,2028年底实现全价值链碳中和。...

    2023-07-15 来源:未知 浏览:194 次

    分享
  • 2023年山西中考太原录取620分以上学校

    2023年山西中考太原录取620分以上学校

    2023太原中考录取 1.2023山西中考太原录取 最低提档分数线 525 分 2.山大附第一志愿分数线为 682 分 3.五中青年路校区分数线为 674 分,龙城校区为 669 分 4.成成晋源校区分数...

    2023-07-15 来源:未知 浏览:146 次

    分享
  • 2023年中国电化学储能行业市场现状、

    2023年中国电化学储能行业市场现状、

    1、电化学储能行业概况 电化学储能定义 电化学储能就是电池储能,其技术特点均是利用化学元素作为储能介质,充、放电过程,实际上就是储能介质的化学反应或者变价...

    2023-07-13 来源:未知 浏览:60 次

    分享
  • 2023-2028年全球及中国电化学储能行业

    2023-2028年全球及中国电化学储能行业

    1、中国电化学储能新增装机规模整体呈现上涨趋势 从新增装机规模来看,近年来中国电化学储能新增装机规模整体呈现上涨趋势。2021年,中国电化学储能新增装机规模大...

    2023-07-13 来源:未知 浏览:143 次

    分享
  • 2022中国电化学储能行业市场研究:行

    2022中国电化学储能行业市场研究:行

    一、产业链情况 储能是指通过介质或设备把能量转化为在自然条件下较为稳定的存在形态并储存起来,以备在需要时再释放的过程。一般可根据能量存储形式的不同分为...

    2023-07-13 来源:未知 浏览:80 次

    分享
  • 图解:2023年“负责任、讲信誉、计贡

    图解:2023年“负责任、讲信誉、计贡

    ...

    2023-07-10 来源:未知 浏览:139 次

    分享
  • 国自然基金会评:上会及分数!

    国自然基金会评:上会及分数!

    从当前的国自然评审进程上,当前已经进入人才类、重点类的项目答辩评审,稍晚后会进行学科(面青地)的评审。 对于国自然的会评,分为几个部分: 1、对于人才类...

    2023-07-10 来源:未知 浏览:106 次

    分享
  • 技术人员为什么经常做不好项目管理

    技术人员为什么经常做不好项目管理

    很多技术人员都想成为管理者,做项目经理也是一条路径,但是我见到过很多技术人员,虽然技术方面很厉害,但是做项目管理却很难做好。 这本身是一个技术思维和管...

    2023-07-10 来源:未知 浏览:141 次

    分享
  • 班组强,则工厂强

    班组强,则工厂强

    为什么起这个标题? 是近几年来,对多家工厂/不同的企业,运营活动的现况把握与思考。 班组太重要了,企业的经营活动,创造价值的,能够为老板赚钱的都在现场,在...

    2023-07-10 来源:未知 浏览:108 次

    分享
  • 要素获得逻辑——深度思考分享

    要素获得逻辑——深度思考分享

    1、工具可以大大的提高效率,人和动物最大的区别是创造工具、使用工具 ,深度复盘这个过程,就会看到不一样的价值点; (1)为了更好(多、快、好、省)的去完成...

    2023-07-10 来源:未知 浏览:116 次

    分享
换一换
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。