被日本奉为“国宝”的方法论——DOE试验设计之田口方法

“田口方法”不只是方法,它标志着品质改善的重点从生产过程控制向前提升至产品设计阶段,亦称稳健设计(Robust Design)。试验设计源于1920年代研究育种的科学家Dr.Fisher的研究, Dr. Fisher是大家一致公认的此方法策略的创始者,但后续努力集其大成,而使DOE在工业界得以普及且发扬光大者,则非Dr. Taguchi (田口玄一博士)莫属。

田口方法,其核心内容被日本视为“国宝”,在日本是所有工程师必修的技巧。田口方法认为,开发设计阶段是保证产品质量的源流,是上游,制造和检验阶段是下游。

在质量管理中,“抓好上游管理,下游管理就很容易”,若设计质量水平上不去,生产制造中就很难造出高质量的产品。参数设计是产品开发的核心,传统的参数设计是先追求目标值,通过筛选元器件来减少波动,结果是,尽管都是一级品的器件,但整机由于参数搭配不佳而性能不稳定。田口方法则强调找出稳定性达到最佳水平的配方,使产品对各种非控制因素不敏感,从根本上解决内外干扰引起的质量波动问题。

1试验设计DOE概述

DOE的重要作用

  • 可同时变动和测试多个变量的影响;
  • 实验次数少:
  • L8(2)= 128 次(全部组合);
  • 效果最好最可靠;
  • 实验周期最短;
  • 成本最低。

DOE试验设计原理

实验设计是检测、筛选、证实原因的高级统计工具,是利用整个统计领域的知识来理解流程中普遍存在的复杂关系。它不仅能识别单个因素影响,而且能识别多个因子的交互影响。DOE通过安排最经济的试验次数来进行试验,以确认各种因素X对输出Y的影响程度,并且找出能达成品质最佳因子组合。DOE是进行产品和过程改进最有效的强大武器!

DOE的应用范围

DOE主要有以下类别:

1 正交实验设计

2 田口设计

3 全因子实验设计

4 分部因子设计

5 响应曲面设计

6 混料设计

DOE适用于:

1 新产品研制开发

2 产品设计参数优化

3 为产品选择最合理的配方

4 过程设计与优化

5 寻找最佳生产条件

6 提高老产品质量或产能

7 用于质量改进

8 解决长期质量问题

DOE的基本流程

DOE包含计划-实施-分析三个阶段8个步骤:

步骤1:明确目的

步骤2:选择品质特性(响应Y)

步骤3:选择确定因子及其水平

步骤4:选择试验计划

步骤5:实施试验,收集记录数据

步骤6:整理数据,建立分析模型

步骤7:分析数据,确定最优因子组合

步骤8:验证设计

如何根据DOE优缺点选择DOE工具?

1 DOE工具优缺点比较

2 如何选择DOE工具

考虑实验的目的和预算等因素来选择DOE

02 稳健参数设计(田口方法)的认识

稳健参数设计(田口方法)概念引入背景

日本的田口玄一(Genichi Taguchi)博士在参数设计方法方面贡献非常突出,他在设计中引入了“信噪比”(Signal to Noise Ratio, SN Ratio)的概念,并以此作为评价参数组合优劣的一种测度,以至于很多文献和软件都把稳健参数设计方法称为田口设计(Taguchi Design)。

田口设计(Taguchi design),或称稳健参数设计,是通过选择可控因子的水平组合来减少系统(或过程)对噪声变化的敏感性,从而减少系统性能波动的一种统计方法。

产品质量往往受到误差因素的影响,通常有两种方法减小变差:

1)直接减小噪声的变差

2)改变可控因子的水平组合

田口DOE是把“噪声因子”单独分离出来,先对可控因子排列组合,然后把噪声因子和已经排列好的组合相乘,进行试验,得出结果后研究各个因子/组合在"噪声中“的表现是否稳定(稳健),然后选择更稳定(稳健)的参数,从而达到优化设计的目的。

田口DOE基本术语——稳健性、信噪比

田口DOE把噪声因子独立来研究,产生了2个新术语:稳健性&信噪比

稳健的定义为:稳健表示一个状态,在这个状态下,技术、产品或过程性能对变异敏感度低,这也会减低单位制造成本,提升可靠性。它的衡量指标是性噪比。

有一点需要注意的是,相应有三个类型:望大、望小、望目。望目最适合田口方法。

信噪(SN)比是一个通信学中的一个概念,是指接收到的信号(其中含有噪声)之中,有用信号的功率同噪声功率的比值。

田口用信噪比来作为衡量稳健的指标,公式因为采取了对数,略显复杂,但是本质相似、可以理解成响应均值和均值波动之间的比值,信噪比越大越好。

针对响应的三个类型,望大、望小、望目

信噪比的计算方法也不尽相同,但是本质都是均值和标准差的比值。

每一个因子的每个水平都对应几个小的”直方图“,把几个小的”直方图“合成一个大的”直方图“,计算大的”直方图“对应的信噪比,就可以看出该因子水平条件下是否稳健。

区分可控因子

对影响位置(响应均值)的因子叫做位置因子,对影响散度(信噪比)的因子叫做散度因子。

利用区分后的的可控因子

通过对信噪(SN)比和平均值的分析,可以对因子进行分类调整,然后根据因子的特性对因子进行调整找到最佳的参数设置(设计)以下的图是针对望目型的,望大望小则应先调位置(均值)再调散度。

无统计障碍,实用-高效-稳健。

田口方法具有很强的抗干扰能力,因此又称为“稳健参数设计”——通过调整可控因子的水平,来降低或弱化噪音对Y的影响,从而提高设计方案的抗干扰能力。

田口方法的主要工具是正交表,信噪比 (S/N)。信噪比度量响应在不同噪声条件下相对于标称值或目标值如何变化。根据试验的目标,可以从不同的信噪比中进行选择。对于静态设计,Minitab 提供四种信噪比:

注意:望目(默认)信噪比对分析或确定比例因子很有用,这些因子的均值和标准差按比例变化。比例因子可用来调整目标的均值,而不会影响信噪比。

那么,接下来我们就来说说田口质量思想和田口设计思路。

03 田口质量管理思想

田口玄一的质量观涉及整个生产职能,共有以下5个要点:

  • 在竞争性市场环境下,不断提高产品质量、削减成本是企业的生存之道。
  • 衡量成品质量的一个重要标准是产品对社会造成的一切损失。
  • 改变产前实验的程序。从一次改变一个因素到同时变化多个因素,提高产品和流程的质量。
  • 改变质量定义。由"达到产品规格"改为"达到目标要求和尽量减少产品变异"。
  • 通过检查各种因素,或参数素,对产品性能特色的非线性影响,可以减少产品性能(或服务质量)的变化。任何对目标要求的偏离都会导致质量的下降。

04 田口设计思路

田口设计之三阶段

田口博士认为,产品设计可以分为系统设计、参数设计和容差设计三个阶段。

  • 系统设计主要是系统地提出初始的总体设计方案,对产品进行整体的系统和整个结构的设计,主要由专业技术人员来完成。
  • 参数设计是探求最佳的参数组合,提高产品性能稳定性,决定系统中各参数的选择,使产品的性能既能达到目标值,又使它在各种条件下波动小,稳定性好。
  • 容差设计主要是为关键件确定合理的容差(公差)范围,要使产品性能接近目标值,元件的容差应是多少为宜。

建模策略

① 乘积表

策略:位置建模(样本均值)、散度建模(样本方差)

定义:位置和散度的度量值关于可控因子主效应和交互效应的模型

望目型程序:先用散度因子使散度最小化,再用调节因子达到目标值

望大/小型程序:先用位置因子使位置最大/小化,再用非位置因子的散度因子使散度最小化。

②单一表

策略:响应建模

定义:将响应变量拟合为可控因子和噪声因子的函数

稳健性的质量——S/N比

质量稳定包括质量特征接近目标值和质量特征受噪声干扰波动小。

S/N(信噪比)既然考虑了质量特征的平均水平,又考虑了其波动情况,因此用S/N评价质量水平是比较合理的,S/N越大,说明质量水平越高。

综合误差法:在噪声表中选择3~4个能使误差达到最大的最具代表性的实验结果作为全部实验误差的代表;

最不利综合误差法:在噪声表中只选2个最不利情况(一个正偏,一个负偏)

田口设计流程

静态设计VS动态设计

动态稳健参数设计是:一个系统会受到一些可控因子的影响,也会受到一些非可控因子(噪声、误差的)影响

当该系统接收到某个信号作为其输入特性时,其输出会显示出与之相应的动态特性。我们所要研究的就是,只考虑可控因子的设置,如何选择可控因子的最佳设置以使这种对应关系更准确。

动态稳健参数设计与静态稳健参数设计的差别,其实就是动态多了个信号因子,信号因子可以取不同的值。静态稳健参数设计中没有信号因子,也可以抽象地说,静态稳健参数设计其实就是这个信号因子只取一个固定值罢了,响应也就只有一个。

05 稳健参数设计(田口方法)如何实现

那么,接下来我们就来说说稳健参数(田口方法)是通过哪些步骤实现的呢?

田口DOE基本步骤

步骤1. 了解问题

(1) 定义系统目标/范围:包含定义系统的目标、系统或子系统(subsystem)的范围、选择项目负责人及其成员、发展项目运作策略。

(2) 选择回应值:此步骤主要是确认主要功能、副作用和失效型态,建立想要达成的结果,选择回应值或理想机能(理想机能为信号因子与质量特性的理想关系式)及决定量测的方式。

步骤2. 选择因子和水平

(1) 发展信号因子和杂音策略:决定信号因子的范围、重要的杂音因子及其水平、发展杂音策略。

(2) 辨认控制因子及其水平:辨认所有的控制因子、选择重要的控制因子及其水平。

步骤3. 选择适用之直交表

选定适用之直交表并指派控制因子至直交表中。

步骤4. 准备及执行实验,收集数据:准备/规划实验,并执行实验,收集数据。

步骤5. 根据质量特性计算直交表中每一次实验的SN比与y 。

步骤6. 完成并解释各因子对于SN比与y 的效果图,执行二阶段最佳化程序。

步骤7. 决定控制因子的最佳水平组合,并预估其SN比和y 。

步骤8. 执行确认实验:田口建议要进行确认实验,如果确认实验结果与预估的结果不吻合(或不满意),那么表示实验的过程失败,必须重新规划实验。

步骤9. 结论与建议:当确认实验成功,将控制因子的最佳水平组合纳入系统中执行。

田口DOE实例分析(实例步骤)

某工程人员要确定温度、压力、厚度与封装强度的关系,利用田口设计寻求最佳参数组合,所确定的因子水平和响应目标如下:

响应:封装强度,望目特性(18kgf)

由于本次田口实验中采用了部分因子设计,没有收集所有组合的数值。当B2C2组合固定时,根据主效应叠加计算结果为:

结语

为什么DOE试验设计被日本奉为“国宝”?

田口玄一的DOE设计方法可以优选出最佳的参数组合,进而大大提高产品的性价比。据称,每年日本有数百家企业利用该方法完成10万余项研究,其质优价廉的产品在国际市场上畅销不衰,促使日本经济和技术飞速发展。因此,DOE试验设计被日本奉为“国宝”。

随着市场竞争的日趋激烈,企业只有牢牢把握市场需求,用较短的时间开发出低成本、高质量的产品,才能在竞争中立于不败之地。在众多的产品开发方法中,田口方法不失为提高产品质量,促进技术创新,增强企业竞争力的理想方法

科研聚焦
猜你喜欢
热门推荐
  • 收费精品:高端人才竞聘竞选答辩工

    收费精品:高端人才竞聘竞选答辩工

    为满足部分老师对人才答辩PPT模板的更高需求,科奖多媒体中心特别设计了几个精品人才竞聘竞选答辩用PPT模板,模板内含10页人才答辩常用内容页框架,整体模板还可应...

    2023-01-14 来源:未知 浏览:122 次

    分享
  • 收费精品模板:重点研发/重大项目

    收费精品模板:重点研发/重大项目

    为满足申请重点研发或重大项目答辩PPT模板的更高需求,锐得PPT特别设计了几个精品项目答辩PPT模板,模板内有9页重点研发答辩常用内容页框架,如果您想使用这个精品...

    2023-01-14 来源:未知 浏览:193 次

    分享
  • 国基金和地方基金评审已在路上,准

    国基金和地方基金评审已在路上,准

    为满足部分老师对人才答辩PPT模板的更高需求,科奖多媒体中心特别设计了10套精品人才答辩PPT模板,模板内含10页人才答辩常用内容页框架,整体模板还可应用于省部级...

    2023-01-14 来源:未知 浏览:100 次

    分享
  • 国家自然科学基金“十四五”学科重

    国家自然科学基金“十四五”学科重

    近日,《国家自然科学基金十四五发展规划》正式公布规划全文,共计21个章节,完整的阐明了国家自然科学基金委十四五期间的发展方向与相关理念,其中值得注意的是...

    2023-01-14 来源:未知 浏览:65 次

    分享
  • 程新兵:金属锂电池热安全失效机制

    程新兵:金属锂电池热安全失效机制

    2022年11月23-25日,由江苏省硅酸盐学会、南京工业大学、材料助研科技发展(无锡)有限公司、江苏新能源电池材料与装备产业院士协同创新中心联合主办的首届新能源陶...

    2023-01-14 来源:未知 浏览:192 次

    分享
  • 超全面的数据可视化指南,码住收藏

    超全面的数据可视化指南,码住收藏

    好看的数据可视化图片是怎么样做的?这里我将介绍如下几个知识点,相信掌握如下数据可视化技巧和知识,一定可以让你的图表焕然一新,令人眼前一亮~ 1. 图表制作规...

    2023-01-14 来源:未知 浏览:200 次

    分享
  • 小鹏汽车电池预加热技术解读

    小鹏汽车电池预加热技术解读

    什么是电池热管理? 电池的习性其实与人相似,它既受不了太热,也不喜欢太冷,最适宜的工作温度在15-40℃之间。但是汽车的工作环境却非常宽广,零下20℃到55C都很常...

    2023-01-14 来源:未知 浏览:154 次

    分享
  • 钠离子电池行业专题报告:硬碳负极

    钠离子电池行业专题报告:硬碳负极

    1、 硬碳负极成为首选,支持钠电快充过放 1.1、 石墨储钠困难,软碳容量不足,钠电池负极首选 硬碳 现有钠电池负极材料技术路线有金属氧化物、有机负极材料、基于转...

    2023-01-14 来源:未知 浏览:87 次

    分享
  • 收藏!一文看懂2022年中国硬碳负极行

    收藏!一文看懂2022年中国硬碳负极行

    一、发展背景:国家大力支持硬碳负极行业的发展 由于国内硬碳负极材料行业发展时间较短,多数企业及研究机构仍处于技术研发及优化阶段,因此国家非常重视硬碳负...

    2023-01-14 来源:未知 浏览:109 次

    分享
  • 人设模糊:员工效率低、团队依赖性

    人设模糊:员工效率低、团队依赖性

    这篇文章很简单,但大概率对管理者有用。 尤其是中基层的管理者,团队的兵没几个,但是活儿却悄无声息的多了很多,自己 好像什么都要负责都要管 ,要盯业绩,要给...

    2023-01-14 来源:未知 浏览:167 次

    分享
  • 逻辑混乱表达不清?10分钟即学即用结

    逻辑混乱表达不清?10分钟即学即用结

    封了这么久,你想去旅游。选好地方之后,你问之前去过的两个朋友体验如何。 张三说了,太好玩了,景点又多又漂亮,我玩了三天都没转完,住的民宿也不错,那边小...

    2023-01-14 来源:未知 浏览:146 次

    分享
  • 管理,战略执行路上最大的"绊脚石

    管理,战略执行路上最大的"绊脚石

    35页PPT放送 企业、管理不能不重视! 执行力这个词相信大家都非常熟悉了,我们会发现我们身边的领导一直在谈执行力,我们身边的管理者也一直都在谈,甚至是平级的...

    2023-01-14 来源:未知 浏览:56 次

    分享
  • 史上最全的工程建设项目全套流程(

    史上最全的工程建设项目全套流程(

    工程建设项目一直以来都是众人眼中的老大难,文中四大流程中的25张图带你搞懂工程建设项目全套流程!! 一、工程建设项目前期工作流程 1.1 工程建设项目基本流程...

    2023-01-14 来源:未知 浏览:107 次

    分享
  • 负极材料及原材料2022年回顾及2023年展

    负极材料及原材料2022年回顾及2023年展

    一、2022年负极材料市场回顾 1.负极原料价格回顾 2022年上半年石油焦整体市场呈现上行趋势,价格持续走高。一季度,下游企业年后陆续开工,需求端入市积极,市场交易...

    2023-01-14 来源:未知 浏览:147 次

    分享
  • ​12分钟极速满充的高能锂离子电池

    ​12分钟极速满充的高能锂离子电池

    第一作者:Un-Hyuck Kim 通讯作者:Chong Seung Yoon、Yang-Kook Sun 通讯单位:韩国汉阳大学 【研究背景】 锂离子电池(LIB)已成为电动汽车的主要电源。尽管LIB 技术取得了明显...

    2023-01-14 来源:未知 浏览:90 次

    分享
  • 锂离子电池的预锂化技术

    锂离子电池的预锂化技术

    锂离子电池(LIBs)由于具备高能量密度、高工作电压和无记忆效应等特点成为广泛应用的电化学储能系统之一,其常用的石墨负极由于容量相对较低(372 mAh g -1 )而难以...

    2023-01-14 来源:未知 浏览:193 次

    分享
  • 生产1GWh电池究竟需要多少材料?

    生产1GWh电池究竟需要多少材料?

    我们经常能听到电池厂商的扩产规划,拟投资建设 100GWh 的动力电池和储能电池产能。 我一直好奇, 1GWH 的电池究竟需要多少材料,决定每种材料用量的主要因素又是什么...

    2023-01-14 来源:未知 浏览:141 次

    分享
  • 锂离子电池快充性能影响因素及解决

    锂离子电池快充性能影响因素及解决

    电池快充作为解决电动汽车充电便捷性的关键突破口,快充技术的突破会提升终端产品用户体验,电池快充技术已经成为动力电池企业参与未来市场竞争的核心竞争力,正...

    2023-01-14 来源:未知 浏览:100 次

    分享
  • 锂电池负极材料-石墨生产工艺介绍(

    锂电池负极材料-石墨生产工艺介绍(

    想来一直没有分享过负极材料的制作工艺,正好近来有些时间,就给大家分享一下负极材料-人造石墨的制作工艺。如果你去过各种材料企业,你会发现,有意思的不止我...

    2023-01-14 来源:未知 浏览:64 次

    分享
  • CrysTBox自动标定TEM衍射斑点

    CrysTBox自动标定TEM衍射斑点

    1. 摘要 TEM作为一种常用的微观结构表征技术已经在材料科学、生物等学科被广泛应用,其中TEM透射电镜衍射斑点标定又是一个躲不过去的工作。衍射斑点标定的过程是利...

    2023-01-14 来源:未知 浏览:77 次

    分享
  • PPT文档排版设计

    PPT文档排版设计

    以结果或结论为导向,提炼主标题; 将正文细分为若干个要点,形成短句或词汇; 如果要点还可以再细分,那就试着提炼出关键词...

    2023-01-14 来源:未知 浏览:199 次

    分享
  • 结构化思维—22种高效工作方法和应用

    结构化思维—22种高效工作方法和应用

    什么是结构化思维呢?它的本质是框架,它是我们在思考分析解决问题时的一份流程清单。它是从无序到有序的一种思考过程,将搜集到的信息、数据、知识等素材按一定...

    2023-01-14 来源:未知 浏览:174 次

    分享
  • 石墨化产能已提前过剩?明年会否开

    石墨化产能已提前过剩?明年会否开

    四季度以来石墨化加工价格持续下调 明年石墨化价格走势如何? 石墨化价格整体呈现先上涨后下降的趋势。 主要是四季度以来,随着前期新增产能的逐步释放,石墨化市...

    2023-01-14 来源:石墨盟 浏览:131 次

    分享
  • 技术 | 锂电池设计的N/P比---超全面总

    技术 | 锂电池设计的N/P比---超全面总

    电芯设计表是做电芯产品开发材料开发工程师的必备工具之一。设计表格式往往每个公司都不同,甚至一个公司内都有许多种设计表,但是其核心都是一样的。即使没有前...

    2023-01-14 来源:未知 浏览:113 次

    分享
  • 锂电池盖帽工作原理,终于有人总结

    锂电池盖帽工作原理,终于有人总结

    一、电池盖帽的作用与原理 (1)正或负极引出端 (2)温度保护作用:PTC (电阻骤增,切断电流) (3)断电保护功能:CID 电流断开装置 (内压上升Vent翻转CID焊点拉断...

    2023-01-14 来源:未知 浏览:178 次

    分享
  • 复合负极体系解决快充难题播报文章

    复合负极体系解决快充难题播报文章

    动力电池能量密度的持续提升,使得电动汽车的续航里程持续提升,目前主流车型续航里程普遍超过400km,高端车型达到500km,甚至部分车型达到600km以上,已经能够基本解...

    2023-01-14 来源:未知 浏览:183 次

    分享
  • 关于锂离子动力电池超级快充,这4大

    关于锂离子动力电池超级快充,这4大

    英国帝国理工学院Gregory Offer课题组、清华大学欧阳明高院士课题组和法拉第研究所的Billy Wu 联合壳牌石油公司的研究人员联合在国际交通电动化杂志 eTransportation 上发表了...

    2023-01-14 来源:未知 浏览:146 次

    分享
  • 被日本奉为“国宝”的方法论——D

    被日本奉为“国宝”的方法论——D

    田口方法不只是方法,它标志着品质改善的重点从生产过程控制向前提升至产品设计阶段,亦称稳健设计(Robust Design)。试验设计源于1920年代研究育种的科学家Dr.Fisher的...

    2023-01-14 来源:未知 浏览:155 次

    分享
  • 电力设备行业述往事,思来者:电池

    电力设备行业述往事,思来者:电池

    电力设备行业述往事,思来者:电池科技前瞻集萃...

    2023-01-14 来源:未知 浏览:171 次

    分享
  • 2022年高压快充行业研究报告

    2022年高压快充行业研究报告

    第一章 行业概况 高压快充即为快速充电,衡量单位可用充电倍率(C)表示。充电倍率越大,充电时间越短。依据公式,电池充电的倍率(C)=充电电流(mA)/电池额定容...

    2023-01-14 来源:未知 浏览:177 次

    分享
  • 空间、时间分辨率齐上阵!实现“看

    空间、时间分辨率齐上阵!实现“看

    第一作者:Maha Yusuf 通讯作者:Jacob M. LaManna,Johanna Nelson Weker,Michael F. Toney 通讯单位:美国国家标准与技术研究所,美国SLAC国家加速器实验室,美国科罗拉多大学 利用具...

    2023-01-14 来源:未知 浏览:66 次

    分享
  • 2023年中国锂离子电池产业链上中下游

    2023年中国锂离子电池产业链上中下游

    中商情报网讯:近年来,锂电池不仅广泛应用于新能源汽车、消费类电子产品、储能领域,而且受工业智能化、军事信息化、民用便利化以及互联网、物联网、智慧城市快...

    2023-01-14 来源:未知 浏览:54 次

    分享
  • PPT| 涂布改进分析总结报告

    PPT| 涂布改进分析总结报告

    ...

    2023-01-14 来源:未知 浏览:198 次

    分享
  • TEM衍射花样标定神器:25秒自动分析选

    TEM衍射花样标定神器:25秒自动分析选

    CrysTBox 采用人工智能和可视化技术,可自动标定TEM衍射花样,实现绝大多数TEM衍射花样在极短时间内的自动分析。 简单暴力,迷之方便。 CrysTBox称得上是绝对的神器! 设...

    2023-01-14 来源:未知 浏览:174 次

    分享
  • 可研报告由谁编制?国家发改委发布

    可研报告由谁编制?国家发改委发布

    2017年至2021年, 工程咨询资质、招标代理资质、工程造价资质相继取消 。 此前,有网友向发改委提出咨询,现在已取消工程资质认定, 现在需要编制政府投资的可行性研...

    2023-01-14 来源:未知 浏览:142 次

    分享
  • 2022年中国锂电池负极材料行业产业链

    2022年中国锂电池负极材料行业产业链

    正文开始 负极材料是锂离子电池的关键材料之一,约占锂电池成本的10%。目前常见的负极材料有石墨类负极材料、硅基负极材料、钛基负极材料、锡基负极材料等。其中...

    2023-01-14 来源:未知 浏览:164 次

    分享
  • 中国综合甲级设计院

    中国综合甲级设计院

    第一名:北京,共21家综合甲级设计院!21家我天,全国的四分之一,北京作为带头大哥这么干真的好吗,好学校你最多,好单位也是你最多。难怪这么多人想去北京。 中...

    2022-12-22 来源:未知 浏览:144 次

    分享
  • 印刷电路板下一部分:重要原材料

    印刷电路板下一部分:重要原材料

    1PCB产业链 PCB产业链的上下游划分明确,其次是上游原材料、中游基材、下游应用。 原材料成本在印刷电路板运营成本中所占的比例很高,约为60-70%,因此原材料行业对整...

    2022-12-22 来源:未知 浏览:126 次

    分享
  • 锂离子电池负极材料石油焦的分类介

    锂离子电池负极材料石油焦的分类介

    (1)按焦化方法的不同 可分为平炉焦、釜式焦、延迟焦、流化焦4种,前两种焦已很少生产,目前中国大量生产的是延迟焦。 (2)按热处理温度区分 可分为生焦和煅烧焦...

    2022-12-21 来源:未知 浏览:107 次

    分享
  • 璞泰来(603659)厚积薄发,一体化版图初

    璞泰来(603659)厚积薄发,一体化版图初

    璞泰来过去局限高端市场,与动力主流系中低端相悖,近三年市占率约17%未见提升。未来势必要进入中低端市场,但公司还未大规模涉猎中低端产品,市场对其在中低端市...

    2022-12-21 来源:天风证券 浏览:135 次

    分享
  • 什么是石油焦?生焦和熟焦的区别是什

    什么是石油焦?生焦和熟焦的区别是什

    石油焦是延迟焦化装置的原料油在高温下裂解生产轻质油品时的副产物。石油焦的产量约为原料油的25-30%。石油焦生产工艺是以原油经蒸馏后的重油或其它重油为原料,以...

    2022-12-21 来源:未知 浏览:60 次

    分享
  • 负极原材料以及终端需求情况

    负极原材料以及终端需求情况

    1.总体观点 石墨化: 到明年年中释放产能 原材料: 预计未来两年都会高位震荡 2.煤系针状焦、油系针状焦的区别和应用: 原料不同: 油系用油浆,煤系用煤沥青。 应用...

    2022-12-21 来源:未知 浏览:82 次

    分享
  • 锂电负极用焦“蜕变”,详解负极焦

    锂电负极用焦“蜕变”,详解负极焦

    焦原料对人造石墨的负极性能而言,极其重要。因此后续需要关注其变化。 新能源汽车的时代已经到来,影响动力电池性能的锂电负极材料,必然值得关注。锂电负极材...

    2022-12-21 来源:未知 浏览:116 次

    分享
  • 一文了解石油焦

    一文了解石油焦

    油焦 石油焦 是减压渣油经延迟焦化装置在高温500-550℃下裂解焦化而生成的黑色固体焦炭。 石油焦是黑色或暗灰色坚硬固体石油产品,带有金属光泽,呈多孔性,是由微...

    2022-12-21 来源:未知 浏览:192 次

    分享
  • 超级石化推荐:石油系针状焦生产原

    超级石化推荐:石油系针状焦生产原

    20世纪70年代,针状焦开始得到重点发展,主要用于生产电弧炉和超高功率的石墨电极。近年来,受下游新能源汽车行业爆发的影响,用于生产锂电池负极材料的针状焦需...

    2022-11-11 来源:未知 浏览:147 次

    分享
  • 图文详解“石油焦”和“针状焦”

    图文详解“石油焦”和“针状焦”

    石油焦 是原油经蒸馏将轻重质油分离之后,重质油再经热裂过程产生的产品。 其主要特点是 碳含量 通常在 80wt% 以上,硫含量 0.3wt%-9.0wt% ,其余为氢、氧、氮以及钒、钙...

    2022-11-11 来源:百川资讯 浏览:150 次

    分享
  • 石油焦紧张供应、不同负极对原料需

    石油焦紧张供应、不同负极对原料需

    Q1:石油焦和针状焦在负极应用上的区别? A:根据负极产品的能量密度和循环密度来进行选择的,石油焦做的负极容量最高353mAh/g,353mAh/g以上需要用针状焦。所以350mAh...

    2022-11-11 来源:未知 浏览:63 次

    分享
  • 钠离子电池储能技术及经济性分析

    钠离子电池储能技术及经济性分析

    摘 要 储能技术是构建能源互联网的关键支撑技术,是保障电网稳定运行、优化能量传输、消纳清洁能源、改善电能质量等的重要手段。电化学储能具备地理位置限制小、...

    2022-11-11 来源:中科海钠科技有限责任公 浏览:136 次

    分享
  • 储能技术是实现“双碳”目标的关键

    储能技术是实现“双碳”目标的关键

    储能技术是实现双碳目标的关键 十四五能源领域科技创新规划解读之九 陈海生 一、储能发展背景 我国实现双碳目标面临的形势与挑战 一方面,我国实现双碳目标时间短...

    2022-11-11 来源:未知 浏览:106 次

    分享
  • 随着储能时长的增加,其他替代技术

    随着储能时长的增加,其他替代技术

    美国电力研究院(EPRI)的Haresh Kamath说,随着锂离子电池在长时储能(甚至可能达到24小时)的成本竞争力的提高,未来10年,其他长时储能(LDES)技术可能很难与锂离子电池...

    2022-11-11 来源: 中关村储能产业技术联盟 浏览:108 次

    分享
  • 全国人大代表张天任:发展储能对实

    全国人大代表张天任:发展储能对实

    双碳背景下,储能产业发展进入商业化初期,储能对于能源体系有序转型的关键作用初步显现。今年,全国人大代表、天能控股集团董事长张天任向全国人大提交了《关于...

    2022-11-11 来源:未知 浏览:149 次

    分享
  • 碳达峰、碳中和背景下储能技术研究

    碳达峰、碳中和背景下储能技术研究

    能源利用是我国温室气体的主要来源。作为流程工业的典型高排放行业,即化工、钢铁、有色、建材工业过程的二氧化碳(CO2)排放约占全国总排放的近 40%,是我国碳排...

    2022-11-11 来源:中国发展门户网 浏览:146 次

    分享
  • 中国石油焦行业现状分析:产量稳步

    中国石油焦行业现状分析:产量稳步

    随着技术进步,我国 石油焦 下游的预焙阳极、石墨电极和负极材料企业竞争力明显增强,国内需求和出口量持续上升,产量持续增加,石油焦需求较强,表观消费量稳步...

    2022-10-05 来源:未知 浏览:120 次

    分享
  • 石油焦半年报:上半年乘风破浪创新

    石油焦半年报:上半年乘风破浪创新

    2022年上半年石油焦多方借力强势上涨,年初冬奥会助力石油焦乘风破浪,随后国内部分炼厂检修,铝价持续高位,在供需双向利好作用下,石油焦扬帆起航再创历史新高...

    2022-10-05 来源:未知 浏览:148 次

    分享
  • 锂电负极需求高增,低硫焦严重紧缺

    锂电负极需求高增,低硫焦严重紧缺

    核心结论: 石油焦作为炼厂副产品,产量基本稳定,下游在 电解铝、石墨负极及锂电负极 带动下,需求持续抬升,供需关系趋紧, 低硫焦 的紧缺更为明显。 长期供需关...

    2022-10-05 来源:未知 浏览:137 次

    分享
换一换
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。