锂离子电池充电时,离子嵌入石墨负极的形态是什么,锂枝晶如何形成?
发布时间:2021-12-27来源:未知 编辑:admin
广告位置(首页一通--图文)
就我的见解,来说说的我的看法(看到JEFF大神我都跪下了有木有)。这里将题主的问题分成两个部分
锂离子电池充电时,离子嵌入石墨负极的形态是什么,如果像许多人认为的那样,锂离子嵌入石墨之后仍然以离子形态存在,那化学反应在哪里发生?如果离子在界面发生化学反应,那是否可以认为锂离子已转化为原子形态,之后向固相本体内扩散?
在给电池充电的过程中,外界给予外界一个电压,使得正极材料内部的锂离子得以脱出进入电解液介质中,同样电解液中的锂离子会在外界电压差的条件下向碳层移动,由于石墨是具有层状通道的,锂便会进入通道与碳形成碳锂化合物,形成LiCx(x=1~6)这类石墨层间化合物*,而后在石墨中进行固相传输。所以,可以认为化学反应发生在Li+与石墨的化学反应在电解液与石墨的界面处(SEI膜内还是膜外就现阶段就我了解还是存疑的,因此大部分文献中用的是lithium而不是lithium ion,可以参考下面文献中锂离子在SEI膜内还是膜外都有)
,可以参考:
锂电池基础科学问题(Ⅵ)——离子在固体中的输运
在锂离子电池中,离子可以从外部进入。因此存在一个问题,离子是如何穿过固体的,是通过连续的间隙位或空位从一侧传输到另一侧,还是通过与晶格内锂离子的交换传输,需要进一步澄清。不同的传输方式,与固体的微观缺陷结构有关。在讨论具体的扩散机制中,准确判断到底是采用哪种扩散机制并不容易。
这里有两篇很有意思的文献供你参考,Lithium Diffusion in Graphitic Carbon和Diffusion Mechanism of Lithium Ion through Basal Plane of Layered Graphene做的研究Li+在固相间的传输,大体上说对于多层石墨,Li+主要是在石墨微晶的晶界上传输,而石墨的“阶结构”和缺陷之间的传输几乎可以忽略。而对于单层或几层的石墨烯,石墨烯之间的缺陷和石墨烯内部的缺陷是其主要的传输方式。
所以,不能单纯的认为锂离子转变为原子形态,其在内部扩散方式锂在固相中的扩散过程(嵌入/脱嵌、合金化/去合金化)是很复杂的,既有离子晶体中“换位机制”的扩散,也有浓度梯度影响的扩散,还包括化学势影响的扩散。
*注:石墨层间化合物(简称GICs)是一种利用物理或化学的方法使非炭质反应物插入石墨层间,与炭素的六角网络平面结合的同时又保持了石墨层状结构的晶体化合物。
锂枝晶如何形成?锂枝晶形成的根本原因是否在于原子形态的锂来不及往固相本体扩散?
可能这里会有疑问,如果没有锂原子,怎么形成的枝晶?
枝晶生长的模型有很多,到现在为止并没有统一的答案,先说说题主说的负极。
一个很重要的影响因素就是离子浓度梯度。电解液在充放电的过程只是起到一个传递Li+的作用,一个完整的电化学反应,正极脱出一个锂离子,同时释放一个电子,到负极肯定是消耗一个锂离子,同时吸收一个电子。H.J.S. Sand认为在这种情况下离子的浓度在负极表面减少,而在正极表面增加。在电流密度大的稀溶液中,离子浓度会变为0,导致电荷转移控制过程转换为传质控制过程, 此过程成为Sand’s behavior,而离子浓度变为0的时间称为Sand's time[III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid],Despi c和Popov等人证实了离子浓差极化对枝晶生长的影响[http://link.springer.com/chapter/10.1007/978-1-4684-3003-5_4]。
在此基础上Fleury et al.和Chazalviel建立模型表明当离子浓度降低到0时,负极将形成局部空间电荷,并形成枝晶结构,枝晶结构生长速度和电解液中离子偏移速率相同。[The role of the anions in the growth speed of fractal electrodeposits,Phys. Rev. A 42, 7355 (1990)]Brissot原位研究lithium/PEOeLiTFSI/lithium电池证实锂枝晶生长速率接近于Chazalviel的模型,该速率仅和Li迁移率和电场强度有关,但是他还说明Chazalviel需要进一步考虑Li+迁移和扩散的速率变化,在实验观察过程中,循环过程时会发现锂枝晶被一些“阻碍”抑制,同时,电解液的流动也会阻碍锂枝晶的形成。[In situ study of dendritic growth inlithium/PEO-salt/lithium cells]
Rosso et al.发现短路时间(即锂枝晶的生长)时间接近Sand’s time,而Sand’s behavior没有出现。因此,他们修正了该模型,阐明平行于电极材料的离子浓度分布并不稳定的特性。[Onset of dendritic growth in lithium/polymer cells]
Barton和Bockris的进一步说明模型认为,液态电解质中界面层再其低于生长电流密度时,界面薄和突起部分的Li沉积速率要远高于其他部位,这是得益于该处的球面扩散。理想平面情况下线性扩散将占主导,而在有凸起时3D扩散将占主导。球面扩散时,锂枝晶的尖端有最小的直径,使其具有很大的电流密度,使其快速生长。而实验观测中锂枝晶尖端都是圆形或者平面而非突起状,他们引入了表面能解释,其改变了这种变“尖”的趋势也限制了锂枝晶的生长速率。 [http://rspa.royalsocietypublishing.org/content/268/1335/485.short]
Monroe,Newman和Akolkar进一步拓展了Barton和Bockris的模型,他们考虑到了电解液中离子浓度的变化。Akolkar认为,锂枝晶在低温情况下生长会变快,因为此时锂离子传质阻力增加而且SEI薄层带来的界面反应阻力减小。在一定的电流密度下(对应锂充电电流),此模型预测了锂离子生长的临界温度起始值[Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature]
Monroe and Newman的模型, @土豆泥 也提到了这个组的工作,他们认为锂枝景随着时间和传输距离的增加而增加。高电流密度下,锂枝晶生长也会加速,在这种电镀过程中(Li枝晶的生长也可以看做一种电镀过程),减小电流密度也会减速枝晶生长。[Dendrite Growth in Lithium/Polymer Systems]
另一方面,我们知道静电效应在极化的物体中,载流子的分布式是不均匀的,其外部的电荷密度远高于内部,且在突起处会更高,这里就形成了比较强的电场,这里更易于Li+得到电荷而沉积(这也是为何粗糙的表面更容易析出锂),这种静电效应是会自发增强的,析出的锂(形成突起)又会更容易聚集电荷,造成锂进一步析出。(13年JACS有人通过LiPF6中加CsPF6,把它变成一种自愈过程了)[Microscopic studies of transition metal chalcogenides,Dendrite-Free Lithium ,Deposition via Self-Healing Electrostatic Shield Mechanism]
再说说正极。
Cohen提出的模型是基于复杂的SEI膜生长的,他们的观点在非水电解液中,由于在活性物质表面形成,其界面上反应活性点多,形成了马赛克状多层结构,导致了SEI形成的不均衡,SEI的厚度不均和离子导电性差异,进而引起 SEI的局部沉积和溶解,也使活性物质层和SEI膜部分。
Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy
Yamaki 等人提出了晶须生长的理论,他们认为锂枝晶生长模式是晶须生长,锂的沉积位置是膜上具有更高离子电导率和晶界以及缺陷的位置,这导致了锂原子分布的不均匀和造成SEI膜下应力分布的不均,为了缓解这类应力,锂的表面张力会促使其穿透SEI膜形成晶须,而锂沉积继续在锂基底上而非晶须,最终使锂电极表面长满晶须,长时间的沉积使电极表面被长晶须覆盖,阻碍锂离子的继续传输,然后锂才会沉积才晶须的连接处和尖端(这些地方一般都有缺陷),由于这类“粗大”连接的出现,锂沉积的电流密度变得很小,使其继续成为颗粒状的锂枝晶或者非晶锂。[A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte]
还有一些模型就没有相适应的实验结果与之对应了。这里就不细说了。有兴趣我可以给你发些文献,然后呢,我在看原位文章的时候发现了一些原位TEM的研究枝晶的文章,供你参考。
下图是锂在过电位沉积的图,文章的前文证明了SEI的形成是先于Li枝晶的形成的,图1的虚线表明锂沉积是枝晶的树突部位,这可能是由于在这些部位有更高的锂离子电导率或者电子电导率,靠近界面时,拐角处明暗的对比告诉我们这里有更多的枝晶生长,c图中出现了一些颗粒状物质(由于TEM分辨率的影响,作者并未告诉我们这是什么物质),他后面通过循环的观察其溶解和形成推测这是Li,这一发现表明Li的沉积不仅仅在电极表面也是在SEI中的,那么,这些Li的金属颗粒将作为电子传输通道和锂枝晶生长的种子层,因此,SEI将极大影响锂枝晶的生长。文章中,还提到了电解液对欠电势沉积的影响,表明不同电解液中锂沉积的电压不同。[Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy - Chemical Communications (RSC Publishing)]
图E中可以看到Li枝晶在两个气泡之间形核,而且枝晶形成的界面是LI-Au表面,即SEI层,然后迅速长大,之后锂枝晶的尖端局部脱离,并在放电过程中溶解。[Visualization of Electrode]
当然,TEM原味观察不可避免的会偏离正常电池的部分特性,但其也算是直观的表面出了Li的生长过程,由于能力有限,了解到的信息主要是这些,希望能够给你一些帮助。
题主问到了界面问题则不得不说到SEI,这里没有时间细细给题主说到SEI的问题,可以参考,锂电池基础科学问题(Ⅴ)——电池界面,这里对SEI形成说的很多,虽然不是最全面的不过也算是中文里写的很不错的了。